内容发布更新时间 : 2024/11/16 21:35:02星期一 下面是文章的全部内容请认真阅读。
全等三角形问题中常见的辅助线的作法(含答案)
总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等
【三角形辅助线做法】
图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线
合一”的性质解题
2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端
5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形
7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可
以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或
40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)
遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形. 2)
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,
利用的思维模式是全等变换中的“旋转”法构造全等三角形. 3)
遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4)
过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5)
截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)
已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等
例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 解:延长AD至E使AE=2AD,连BE,由三角形性质知 AB-BE <2AD ABDC例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG, 显然BG=FC, 在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知 EG=EF 在△BEG中,由三角形性质知 EG AEFBDC 故:EF 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. ABDEC 解:延长AE至G使AG=2AE,连BG,DG, 显然DG=AC,∠GDC=∠ACD 由于DC=AC,故∠ADC=∠DAC 在△ADB与△ADG中, BD=AC=DG,AD=AD, ∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG 故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE 应用: 1、以的两边AB、AC为腰分别向外作等腰Rt?ABD和等 ?ABC腰Rt?ACE, ?BAD??CAE?90?,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系 及数量关系. (1)如图①当?ABC为直角三角形时,AM与DE的位置关系是, 线段AM与DE的数量关系是; (2)将图①中的等腰Rt?ABD绕点A沿逆时针方向旋转?(0<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. ?