内容发布更新时间 : 2024/11/3 4:11:57星期一 下面是文章的全部内容请认真阅读。
.
第一章 几何光学基本定律
1. 已知真空中的光速c=3?10m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火
8石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解:
则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。
2. 一物体经针孔相机在 屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
,所以x=300mm
即屏到针孔的初始距离为300mm。
3. 一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在
玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?
. .
.
n1 n2 I1=90? x L I2
1mm
200mm n1sinI1?n2sinI2
sinI2?1?0.66666 n2
cosI2?1?0.666662?0.745356
0.66666?178.88
0.745356 L?2x?1?358.77mm
x?200*tgI2?200*4.光纤芯的折射率为n1,包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:
n0sinI1=n2sinI2 (1)
. .
.
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:
(2)
由(1)式和(2)式联立得到n0 .
5. 一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决,
设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公
式:
. .