数据仓库建设方案 下载本文

内容发布更新时间 : 2024/12/23 10:12:28星期一 下面是文章的全部内容请认真阅读。

第1章 数据仓库建设

1.1 数据仓库总体架构

专家系统接收增购项目车辆TCMS或其他子系统通过车地通信传输的实时或离线数据,经过一系列综合诊断分析,以各种报表图形或信息推送的形式向用户展示分析结果。针对诊断出的车辆故障将给出专家建议处理措施,为车辆的故障根因修复提供必要的支持。

根据专家系统数据仓库建设目标,结合系统数据业务规范,包括数据采集频率、数据采集量等相关因素,设计专家系统数据仓库架构如下:

数据仓库架构从层次结构上分为数据采集、数据存、数据分析、数据服务等几个方面的内容:

数据采集:负责从各业务自系统中汇集信息数据,系统支撑Kafka、Storm、Flume及传统的ETL采集工具。

数据存储:本系统提供Hdfs、Hbase及RDBMS相结合的存储模式,支持海量数据的分布式存储。

数据分析:数据仓库体系支持传统的OLAP分析及基于Spark常规机器学习算法。

数据服务总线:数据系统提供数据服务总线服务,实现对数据资源的统一管理和调度,并对外提供数据服务。

1.2 数据采集

专家系统数据仓库数据采集包括两个部分内容:外部数据汇集、内部各层数据的提取与加载。外部数据汇集是指从TCMS、车载子系统等外部信息系统汇集数据到专家数据仓库的操作型存储层(ODS);内部各层数据的提取与加载是指数据仓库各存储层间的数据提取、转换与加载。

1.2.1 外部数据汇集

专家数据仓库数据源包括列车监控与检测系统(TCMS)、车载子系统等相关子系统,数据采集的内容分为实时数据采集和定时数据采集两大类,实时数据采集主要对于各项检测指标数据;非实时采集包括日检修数据等。

根据项目信息汇集要求,列车指标信息采集具有采集数据量大,采集频率高的特点,考虑到系统后期的扩展,因此在数据数据采集方面,要求采集体系支持高吞吐量、高频率、海量数据采集,同时系统应该灵活可配置,可根据业务的需要进行灵活配置横向扩展。

本方案在数据采集架构采用Flume+Kafka+Storm的组合架构,采用Flume和ETL工具作为Kafka的Producer,采用Storm作为Kafka的Consumer,Storm可实现对海量数据的实时处理,及时对问题指标进行预警。具体采集系统技术结构图如下:

1.2.1.1 数据汇集架构功能

Flume提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力。Flume的数据接受方,可以是console(控制台)、text(文件)、dfs(HDFS文件)、RPC(Thrift-RPC)和syslogTCP(TCP syslog日志系统)等。在我们系统中由kafka来接收。

Kafka分布式消息队列,支撑系统性能横向扩展,通过增加broker来提高系统的性能。

Storm流处理技术,支撑Supervisor横向扩展以提高系统的扩展性和数据处理的实

时性。

1.2.1.2 采集架构优势

(一) 解耦

在项目中要平衡数据的汇集与数据的处理性能平衡,是极其困难的。消息队列在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

?

冗余

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了