内容发布更新时间 : 2024/12/24 2:51:02星期一 下面是文章的全部内容请认真阅读。
在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是: 21 × 21 = 441 22 × 22 = 484 23 × 23 = 529 24 × 24 = 576
求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例:37 × 37 37 - 25 = 12-- (50 - 37)^2 = 169 ---------------------- 1369
注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。
例:26 × 26 26 - 25 = 1-- (50-26)^2 = 576 ------------------- 676
C、加减法
一、补数的概念与应用
补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算
一、某数除以5、25、125时
1、 被除数 ÷ 5
= 被除数 ÷ (10 ÷ 2)
= 被除数 ÷ 10 × 2
= 被除数 × 2 ÷ 10
2、 被除数 ÷ 25
= 被除数 × 4 ÷100
= 被除数 × 2 × 2 ÷1
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×17 15 + 7 = 22 5 × 7 = 35 --------------- 255
即15×17 = 255
解释: 15×17
=15 ×(10 + 7) =15 × 10 + 15 × 7 =150 + (10 + 5)× 7 =150 + 70 + 5 × 7 =(150 + 70)+(5 × 7)
为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 × 19 17 + 9 = 26 7 × 9 = 63
即260 + 63 = 323
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 31 50 × 30 = 1500 50 + 30 = 80 ------------------ 1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:81 × 91 80 × 90 = 7200 80 + 90 = 170 ------------------ 7370
------------------ 7371
原理大家自己理解就可以了。