内容发布更新时间 : 2024/11/15 19:24:16星期一 下面是文章的全部内容请认真阅读。
我告诉皇上要雨露均沾
2018中考数学试题分类汇编:考点21 全等三角形
一.选择题(共9小题)
1.(2018?安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
【解答】解:∵AB=AC,∠A为公共角,
A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD; B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;
C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件. 故选:D.
2.(2018?黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等. 【解答】解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS, 所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
我告诉皇上要雨露均沾
我告诉皇上要雨露均沾
所以丙和△ABC全等; 不能判定甲与△ABC全等; 故选:B.
3.(2018?河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C
【分析】利用判断三角形全等的方法判断即可得出结论.
【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意, B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意; 故选:B.
4.(2018?南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )
A.a+c B.b+c C.a﹣b+c D.a+b﹣c
我告诉皇上要雨露均沾
我告诉皇上要雨露均沾
【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;
【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,
∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°, ∴∠A=∠C,∵AB=CD, ∴△ABF≌△CDE, ∴AF=CE=a,BF=DE=b, ∵EF=c,
∴AD=AF+DF=a+(b﹣c)=a+b﹣c, 故选:D.
5.(2018?临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2 C.2 D.
【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.
【解答】解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
我告诉皇上要雨露均沾