内容发布更新时间 : 2025/1/23 13:42:27星期一 下面是文章的全部内容请认真阅读。
《离散数学》课程论文
计科系 10级 计本
一、对课程的理解
个人认为离散数学是一门综合性非常强的学科。本书分为六个部分。为数理
逻辑、集合论、代数结构、组合数学、图论和初等数论。其中由于课时紧凑 我们忽略了部分学习内容。感觉它是一门集理论思维与抽象思维于一身的学科。开始学习大家可能会觉得很简单,学得很轻松,第一部分的数理逻辑在高中时也有所接触,只是现在在高中的基础上更深层次的加入一些元素。第二部分集合论高中也学过一点基本的,多了二元关系之类。据课本介绍,其中的偏序关系广泛用于实际问题中,调度问题就是典型的实例。第三部分的代数结构是完全新的学习内容,开始带有抽象的色彩。接下来就学习了图论,是个很有意思的部分,不像之前那么枯燥,可以有图形与关系之间的转换。
搜集有关资料得知《离散数学》的特点是:
1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结。
通过以上特点介绍使我对离散数学有了不一样的认识。我们是学计算机专业的学生,离散数学的学习给了我们很多的帮助,虽然这门每个部分的联系不是很紧密。今年我们开设的专业课有《数据库》,其中二元关系这部分与之就有了很大的联系,听过离散数学后,数据库中这些关系的理解起来就不必那么费事了。还有专业课《数据结构与算法》,这部分联系的就多了,主要是图论这部分。使在学习数据结构时节省了不少时间,老师说起来也轻松。 二、对课程的建议
《离散数学》这本书中我们只学了四个部分:数理逻辑、集合论、代数系统、图论.这四部分内容中每一个部分都可以是一门独立的课程,它们分别作为《离散数学》课程的一部分,容易造成教学内容繁多与教学课时数偏少相矛盾,使教学过程具有很大的难度.这几部分的内容我们只是选择性的部分详细讲解,我觉得在教学过程中对讲授内容的设置上应当有所侧重,比如学生对集合论基础的很
多内容在中学数学中已经有所了解,所以这部分内容只需要简要介绍一下,重点放在用集合论的方法解决实际应用问题上.对于二元关系这部分,侧重点是加强对与二元关系的几个性质相关问题的论证方法的训练.在数理逻辑上通过将一般命题公式和一阶逻辑公式化成范式,达到强化训练学生逻辑演算能力,并通过逻辑推理理论的学习来提高逻辑推理能力.图论部分重点放在基本概念的理解和实际问题的处理上,通过对相关定理及其证明思路的理解来体会图论的研究方法.代数系统这部分内容重点放在群论上,尤其要在代数系统、群、子群、循环群、变换群、正规子群的概念及相关问题的理解上下功夫,特别要掌握同构和同态的概念及应用,对于其它的代数系统如环、域及布尔代数则可以略讲.另外,现行大多数教材,主要是集中在从纯数学理论角度教授基本内容,这也是不利于学生的理解学习的.如果选择了这种教材,在教学过程中,应穿插介绍一些知识点在计算机科学中的应用,将之与离散数学理论结合介绍给学生,使学生重视这一课程的学习,产生学习兴趣,主动地进行学习.这将有利于学生理解理论知识,又为后续课程的学习奠定基础. 三、对老师的建议
想起老师嘴角微微的上扬了,觉得老师很亲切。老师每次课后都会布置作批 改作业也很及时,不懂不会的问题也会集中给我们讲解。是位很细心的老师。有时还会和我们讲讲笑话。有时老师不知道我们在下面说什么,那种懵懂的表情很可爱。个人来说还是很满足的,还有知道老师教的科目很多,站在女性的立场很佩服啊,以后得向老师看齐。老师的课还是很有意思的。后期可能是时间的关系和课时的稀少,感觉后面的内容感觉一味概念灌输。总而言之,对老师没什么不满意。真要说什么建议那就严厉一点,吓吓那些不爱学习的。