最新人教版初中数学各章节知识点总结上课讲义 下载本文

内容发布更新时间 : 2025/1/22 21:36:39星期一 下面是文章的全部内容请认真阅读。

学习资料

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。 5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形 有两个角是60°的三角形是等边三角形。 8.直角三角形中,30°角所对的直角边等于斜边的一半。 9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

第十三章、实数 ??自然数(0,1,2,3?)?整数?? ??负整数(?1,?2,?3?)?? ?12?有理数(整数、有限小数、无限循环小数)??正分数(,?)

?23?分数(小数)??? 实数?12??负分数(?,??)5.数a的相反数是-a,一个正实数的绝对值是它本身,??23???一个负数的绝对值是它的相反数,0的绝对值是0

??无理数?正有理数??a??b?ab?a?0,b?0?负有理数?(无限不循环小数)aa?(a?0,b?0)bb

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作a。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。 4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章、一次函数

精品文档

学习资料

知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

(1) (2) (1) (3) ?1??b.?0?1? ?b.?0(2) ?(3) ?2?k?0 k?0??b?0?2??b?0?b?0?b?0 ?3????3?

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。 4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

第十五章、整式的乘除与分解因式 1.同底数幂的乘法法则: a?a?amnm?n(m,n都是正数)

mnmn(a)?a2.. 幂的乘方法则:(m,n都是正数)

?an(当n为偶数时),一般地,(?a)??n??a(当n为奇数时).

n3. 整式的乘法 (1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 精品文档

学习资料 (3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

22(a?b)(a?b)?a?b4.平方差公式: 222(a?b)?a?2ab?b5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a?a?amnm?n (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

0a?1(a?0),如100?1,(-2.50=1),则00无意义. ②任何不等于0的数的0次幂等于1,即

a?p?③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即

1ap( a≠0,p是正整数),

而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如

(-2)-2?11(?2)?3??8 4,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加. 8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法 分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

八年级数学(下)知识点

人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。

第十六章、分式

精品文档

学习资料

知识概念

1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。 2.分式有意义的条件:分母不等于0

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。 4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. 6.分式的四则运算:

1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd

4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c 7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

分式和分数有着许多相似点。教师在讲授本章内容时,可以对比分数的特点及性质,让学生自主学习。重点在于分式方程解实际应用问题。

第十七章、反比例函数

精品文档

学习资料

知识概念

1.反比例函数:形如y=

k1?1(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k y?kxy?k xx2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对

称轴:直线y=x和 y=-x。对称中心是:原点

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 在学习反比例函数时,教师可让学生对比之前所学习的一次函数启发学生进行对比性学习。在做题时,培养和养成数形结合的思想。

第十八章、勾股定理

知识概念

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。 2.定理:经过证明被确认正确的命题叫做定理。

3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

勾股定理是直角三角形具备的重要性质。本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。可以通过自主学习的发展体验获取数学知识的感受。

第十九章、四边形 精品文档