内容发布更新时间 : 2025/1/10 23:04:51星期一 下面是文章的全部内容请认真阅读。
1.设等差数列{an}的前n项和为Sn,若a4+a12+a17+a19=8,则S25的值为__________.
2.在等差数列{an}中,已知a1=1,前5项和S5=35,则a8的值是__________. 3.已知在等差数列{an}中,a2=6,a5=15,若bn=a2n,则数列{bn}的前5项和等于__________.
4.设等差数列{an}的前n项和为Sn,若a1>0,S4=S8,当Sn取最大值时n的值为__________. 5.已知数列{an}的前n项和Sn=n2-10n(n=1,2,3,…),则此数列的通项公式为__________;数列{nan}中,数值最小的项是第__________项.
1+3+5+…+(2n-1)1156.已知=,则n=__________.
1162+4+6+…+2n
7.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于__________. 8.等差数列{an}的前n项和为Sn,且S3=6,a1=4,则公差d等于__________. 9.已知等差数列{an}中,a3a7=-16,a4+a6=0,则{an}前n项和Sn等于__________. 10.设等差数列的前n项和为Sn,且S4=-62,S6=-75. (1)求通项公式及前n项和Sn; (2)求|a1|+|a2|+|a3|+…+|a14|的值.
11.已知等差数列{an}中,公差d>0,其前n项和为Sn,其前n项和为Sn,且满足a2·a3
=45,a1+a4=14.
(1)求数列{an}的通项公式;
Sn(2)通过公式bn=构造一个新数列{bn},若{bn}也是等差数列,求非零常数c.
n+c12.已知数列{an}满足an+1=2n+2an,且a1=1. an(1)若cn=n,求证数列{cn}是等差数列;
2(2)求数列{an}的通项公式.
参考答案
1.50 点拨:由a4+a12+a17+a19=8,得a8+a18=4,即a1+a25=4.∴S25=50. 5×4
2.22 点拨:设公差为d,则S5=5a1+d,
2∴35=5+10d,得d=3,∴a8=a1+7d=22. a5-a215-6
3.90 点拨:d===3,
35-2∴an=a2+(n-2)·3=3n,∴bn=a2n=6n. ∴b1+b2+b3+b4+b5=6(1+2+3+4+5)=90. 4.6 点拨:∵S4=S8,∴S8-S4=0, 即a5+a6+a7+a8=0.
11
根据等差数列的性质,有a5+a8=0,∴a1=-d.
2∵a1>0,∴d<0.
1113
又∵an=a1+(n-1)d=-d+(n-1)d=nd-d.
22
??an≥0,
由题意,可得?
?an+1≤0,?
?
∴?13
(n+1)d-d≤0,?2
13
nd-d≥0,
2
11
解得5≤n≤6,∴n=6.
22
5.2n-11 3 点拨:a1=S1=12-10×1=-9,
当n≥2时,an=Sn-Sn-1=n2-10n-(n-1)2+10(n-1)=2n-11,a1=-9满足上式, ∴an=2n-11.
设bn=nan=2n2-11n,
1112112111121
n2-n+?-=2?n-?2-, 则bn=2?216?84???811
∴当n=时,bn取最小值.
4又n∈N*,∴n=2或3时取最小值. ∵b2=2×22-11×2=-14, b3=32×2-11×3=-15<-14,
∴当n=3时,bn取最小值,即数值最小的项是第3项. 1+3+5+…+(2n-1)n2115
6.115 点拨:∵=2=,
2+4+6+…+2nn+n116∴n=115.
7(a1+a7)7(a2+a6)7(3+11)
7.49 点拨:S7====49,
222
???a2=a1+d=3,?a1=1,
或由???a7=1+6×2=13.
?a6=a1+5d=11???d=2,
7(a1+a7)7(1+13)所以S7===49.
223
8.-2 点拨:∵S3=6=(a1+a3),
2且a3=a1+2d,a1=4,∴d=-2.
9.-n(n-9)或n(n-9) 点拨:设{an}的公差为d,
?(a1+2d)(a1+6d)=-16,?则? ?a+3d+a+5d=0,?11
22??a1+8da1+12d=-16,即? ?a1=-4d,?
?a1=-8,?a1=8,??解得?或?所以Sn=-8n+n(n-1)=n(n-9)或Sn=8n-n(n-1)=-
??d=2d=-2,??
n(n-9).
10.解:(1)由已知S4=-62,S6=-75,
???4a1+6d=-62,?a1=-20,得?∴? ?6a1+15d=-75,???d=3.
∴an=a1+(n-1)d=-20+3(n-1)=3n-23,Sn=na1+43-n, 2
343
即通项公式为an=3n-23,前n项和为Sn=n2-n.
22(2)设an≤0,且an+1≥0,
??3n-23≤0,2023
则?解得≤n≤.
33?3(n+1)-23≥0,?
n(n-1)d3n(n-1)32
=-20n+=n222
又n∈N*,∴n=7,即此数列的前7项为负值.
∴|a1|+|a2|+|a3|+…+|a14|=-a1-a2-a3-…-a7+a8+a9+…+a14 =(a1+a2+…+a7+a8+…+a14)-2(a1+a2+a3+…+a7)=S14-2S7=147, 即|a1|+|a2|+|a3|+…+|a14|=147. 11.解:(1)由a2·a3=45,a1+a4=14,
?a2·?a2=5,?a2=9,a3=45,???
得?解得?或? ???a+a=14,a=9a=5.?1?3?34