多元函数条件极值的几种求解方法概述 下载本文

内容发布更新时间 : 2024/12/25 1:36:04星期一 下面是文章的全部内容请认真阅读。

多元函数条件极值的几种求解方法

摘要

本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。

关键词

极值;拉格朗日乘数法;柯西不等式

I

1前言

函数极值问题已广泛地出现于数学、物理、化学等学科中,且它涉及的知识面非常广,所以就要求学生有较高的分析能力和逻辑推理能力,同时也要求学生掌握多种求函数极值的方法,因此对函数极值的研究是非常必要的。

函数极值的求解与发展极大的推动了微积分学科的发展,为其做出了重大贡献。

微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。

同样在很多工程实际中,我们经常需要做一些优化。举个简单的例子,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是

2

浩大的工程,动不动就几百亿的,如何合理布局才能让这些公共基础建设的利远大于弊。

一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益。

通过对求解多元函数条件极值问题的研究,从中找到求出极值的不同方法,在不同的实际应用中对相关问题运用与其相适应的方法,从而在解决问题的过程达到最优化。学生在遇到不同的问题时能够从中找到突破口,能让这些求解放法扎根于学生的思维中,运用到学生的实际问题中去,并且在解决实际问题的同时,自己的思维能力以及解题能力得到较好的发展。

2 多元函数极值

2.1无条件极值

在解决实际问题中,我们已经看到了最大值最小值的重要性。求

函数的最大值、最小值时,涉及到函数的自变量往往不止一个,因此,就需要求多元函数的最大值、最小值。而最大值与最小值与极值有着密切的联系。首先我们给出多元函数的极值概念,并利用一元函数极值的性质,推断出多元函数极值的性质。

定义 2.1[1]设函数z?f(x,y)在点p0(x0,y0)的某邻域u(p0)内有定义,若对任何p(x,y)?u(p0),都有f(p)?f(p0)(或f(p)?f(p0))。则称

3