ANSYS Maxwell 2D求解齿槽转矩的几种方法 下载本文

内容发布更新时间 : 2025/1/9 16:26:28星期一 下面是文章的全部内容请认真阅读。

ANSYS Maxwell 2D求解齿槽转矩的几种方法

齿槽转矩是永磁电机特有的问题之一,是高性能永磁电机设计和制造中必须考虑和解决的关键问题。其表现是当永磁电机绕组不通电时,永磁体和定子铁芯之间相互作用产生的转矩,它是永磁体与电枢齿之间相互作用力的切向分量引起的。 Maxwell 2D可以有效仿真得出永磁电机电磁方案的齿槽转矩,且方法较多。本文以R17.2 RMxprt中的自带案例4极24槽“assm-1”为模板,介绍3种方法。 打开该案例后,首先将系统中的案例另存到工作目录下,然后在DesignSettings中设置“Fractions 1”,计算并生成Maxwell 2D瞬态场算例。复制该算例,将新算例修改为静磁场算例,并分别再复制一次静磁场和瞬态场算例,删除RMxprt算例,按照图1重命名各个算例。

图1 算例重命名

1静磁场扫描转子旋转角度

首先选中转子轭和4个永磁体,做旋转操作,在弹出窗口中设置旋转角度为变量“my_ang”,并定义变量初始值为“0 deg”,如图2所示。

图2 旋转转子

然后选中模型“Band”,在“Parameters” 中定义求解转矩,如图3所示。

图3 定以转矩求解

在“Analysis”中添加1个“Setup”,设置迭代精度误差为0.1%,最后在“Optimetrics”中设置变量“my_ang”的扫描范围为线性步长[0 deg ,20 deg],步长0.2 deg,如图4所示。

图4 Optimetrics扫描范围设置

设置完成后即可求解,求解完成后按照图5的设置,查看静磁场分析报告。因为本电机的轴向长度为65mm,而Maxwell 2D XY平面静磁场求解的对象默认长度为1m,因此需要在求解结果中加入“/1000*65”的运算。

图5 结果调用界面

重命名该结果报告为“Cogging_ Torque”,齿槽转矩结果如图6所示。

图6 扫描转子旋转角度所得齿槽转矩曲线

值得注意的是,RMxprt一键有限元生成的表贴式永磁体充磁方向为径向充磁,其充磁方向由极坐标定义,即N极充磁方向为R的正方向,S极充磁方向为R的负方向,参考坐标系为“Global”坐标。

而实际工程中常常会遇到平行充磁的电机,对于平行充磁最常用的处理方式是建立参考坐标系,永磁体的充磁方向参考特定参考坐标系的X轴正方向。而在上述操作中,参考坐标系无法跟随转子旋转,使用本方法分析平行充磁时的结果将是错误的,因此可以利用第2种方法分析齿槽转矩。 2静磁场扫描定子旋转角度

打开“2_Cogging_Torque_MS_Stator”算例,首先选择“Stator”和所有的线圈,做旋转操作,设置旋转角度为变量“my_Stator_ang”,变量初始值为“0 deg”,如图7所示。