内容发布更新时间 : 2024/12/26 21:40:02星期一 下面是文章的全部内容请认真阅读。
(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B. (1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
22.(10分)如图,抛物线y=ax+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
2
23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
5
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G. (1)如图,点D在线段CB上,四边形ACDE是正方形. ①若点G为DE的中点,求FG的长. ②若DG=GF,求BC的长.
(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
6
2018年浙江省金华市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)在0,1,﹣,﹣1四个数中,最小的数是( ) A.0
B.1
C.
D.﹣1
【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可. 【解答】解:∵﹣1<﹣<0<1, ∴最小的数是﹣1, 故选:D.
2.(3分)计算(﹣a)÷a结果正确的是( ) A.a
2
3
B.﹣a
2
C.﹣a
3
D.﹣a
4
【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案 【解答】解:(﹣a)÷a=﹣a÷a=﹣a故选:B.
3.(3分)如图,∠B的同位角可以是( )
3
3
3﹣1
=﹣a,
2
A.∠1
B.∠2
C.∠3
D.∠4
【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案. 【解答】解:∠B的同位角可以是:∠4. 故选:D. 4.(3分)若分式A.3
的值为0,则x的值为( ) B.﹣3
C.3或﹣3
D.0
【分析】根据分式的值为零的条件可以求出x的值.
7
【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0, 解得x=3. 故选:A.
5.(3分)一个几何体的三视图如图所示,该几何体是( )
A.直三棱柱
B.长方体
C.圆锥
D.立方体
【分析】根据三视图的形状可判断几何体的形状. 【解答】解:观察三视图可知,该几何体是直三棱柱. 故选:A.
6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )
A.
B.
C.
D.
【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率. 【解答】解:∵黄扇形区域的圆心角为90°, 所以黄区域所占的面积比例为
=,
即转动圆盘一次,指针停在黄区域的概率是, 故选:B.
7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )
8