基于组态王PLC及变频器在恒压供水控制系统的设计论文 下载本文

内容发布更新时间 : 2024/5/20 17:05:56星期一 下面是文章的全部内容请认真阅读。

计算机控制技术课程答辩论文 度的要求。

2.2.2 变频恒压供水系统的组成及原理图

PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图2.2.2所示:

从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为: (l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。

(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;水池水位信号反映水泵的进水水源是否充足。信号有效时,控制

管网压力信号报警信号水池水位信号PLC(含PID)变频器压力变送器M液位变送器用户水泵机组水池图2.2.2变频恒压供水系统控制流程图

系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于水池中的液位传感器;报警信号反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

(3) 控制机构:供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制

12

计算机控制技术课程答辩论文 器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

根据水泵机组中水泵被变频器拖动的情况不同,变频器有两种工作方式即变频循环式和变频固定式,变频循环式即变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统先将变频器从该水泵电机中脱出,将该泵切换为工频的同时用变频去拖动另一台水泵电机;变频固定式是变频器拖动某一台水泵作为调速泵,当这台水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,系统直接启动另一台恒速水泵,变频器不做切换,变频器固定拖动的水泵在系统运行前可以选择[9],本设计中采用前者。

作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断造成故障,因此系统必须要对各种报警量进行监测,由PLC判断报警类别,进行显示和保护动作控制,以免造成不必要的损失。

变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上[10]。变频恒压供水系统结构框图如图:

给定管网压力PIDD/A变频器-PLC接触器水泵机组管道A/D压力变送器

图2.2.3变频恒压供水系统框图

恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,并将其转换为4—20mA的电信号,此检测信号是实现恒压供水的关键参数。由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转

13

计算机控制技术课程答辩论文 换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。 2.2.3 变频恒压供水系统控制流程

变频恒压供水系统控制流程如下:

(l) 系统通电,按照接收到有效的自控系统启动信号后,首先启动变频器拖动变频泵M1工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间Ml工作在调速运行状态。

(2) 当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。反之,当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。

(3) 当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件(在下节有详细阐述)时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(变速运行),同时变频泵M1做工频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,满足增加水泵的条件,将继续发生如上转换,将另一台工频泵M3投入运行,变频器输出频率达到上限频率50Hz时,压力仍未达到设定值时,控制系统就会发出水压超限报警。

(4) 当用水量下降水压升高,变频器的输出频率降至下限频率,用户管网的实际水压仍高于设定压力值,并且满足减少水泵的条件时,系统将工频泵M2关掉,恢复对水压的闭环调节,使压力重新达到设定值。当用水量继续下降,并且满足减少水泵的条件时,将继续发生如上转换,将另一台工频泵M3关掉。

2.2.4 水泵切换条件分析

在上述的系统工作流程中,我们提到当变频泵己运行在上限频率,此时管网的实际压力仍低于设定压力,此时需要增加水泵来满足供水要求,达到恒压的目的;当变频泵和工频泵都在运行且变频泵己运行在下限频率,此时管网的实际压力仍高于设定压力,此时需要减少工频泵来减少供水流量,达到恒压的目的。那么何时进行切换,才能使系统提供稳

14

计算机控制技术课程答辩论文 定可靠的供水压力,同时使机组不过于频繁的切换呢?

由于电网的限制以及变频器和电机工作频率的限制,50HZ成为频率调节的上限频率。另外,变频器的输出频率不能够为负值,最低只能是0HZ。其实,在实际应用中,变频器的输出频率是不可能降到0HZ。因为当水泵机组运行,电机带动水泵向管网供水时,由于管网中的水压会反推水泵,给带动水泵运行的电机一个反向的力矩,同时这个水压也在一定程度上阻止源水池中的水进入管网,因此,当电机运行频率下降到一个值时,水泵就己经抽不出水了,实际的供水压力也不会随着电机频率的下降而下降。这个频率在实际应用中就是电机运行的下限频率。这个频率远大于0HZ,具体数值与水泵特性及系统所使用的场所有关,一般在20HZ左右。所以选择50HZ和20HZ作为水泵机组切换的上下限频率。

当输出频率达到上限频率时,实际供水压力在设定压力上下波动。若出现Ps?Pf时就进行机组切换,很可能由于新增加了一台机组运行,供水压力一下就超过了设定压力。在极端的情况下,运行机组增加后,实际供水压力超过设定供水压力,而新增加的机组在变频器的下限频率运行,此时又满足了机组切换的停机条件,需要将一个在工频状态下运行的机组停掉。如果用水状况不变,供水泵站中的所有能够自动投切的机组将一直这样投入—切出—再投入—再切出地循环下去,这增加了机组切换的次数,使系统一直处于不稳定的状态之中,实际供水压力也会在很大的压力范围内震荡。这样的工作状态既无法提供稳定可靠的供水压力,也使得机组由于相互切换频繁而增大磨损,减少运行寿命。另外,实际供水压力超调的影响以及现场的干扰使实际压力的测量值有尖峰,这两种情况都可能使机组切换的判别条件在一个比较短的时间内满足。所以,在实际应用中,相应的判别条件是通过对上面两个判别条件的修改得到的,其实质就是增加了回滞环的应用和判别条件的延时成立。

实际的机组切换判别条件如下[11]:

加泵条件: f?fUP Pf?Ps?减泵条件: f?fLOW Pf?Ps??Pd 且延时判别成立 (2.6) 2?Pd 且延时判别成立 (2.7)式中: fUP:2上限频率 fLOW:下限频率 Ps:设定压力

Pf:反馈压力

2.3 变频恒压供水系统主要特点:

1. 节能,可以实现节电20%~40%,能实现绿色省电。

15

计算机控制技术课程答辩论文 2. 占地面积小,投资少,效率高。

3. 配置灵活,自动化程度高,功能齐全,灵活可靠。

4. 运行合理,由于是软启和软停,不但可以消除水锤效应,而且电机轴上的平均扭矩和磨损减小,减小了维修量和维修费用,并且水泵的寿命大大提高。

5. 由于变频恒压调速直接从水源供水,减少了原有供水方式的二次污染,防止了很多传染疾病。

6. 通过通信控制,可以实现五人职守,节约了人力物力。

第3章 系统的系统的硬件设计

3.1系统主要设备的选型

根据基于PLC的变频恒压供水系统的原理,系统的电气控制总框图如图3.1所示:

故障、状态等量输入报警、控制等量输出上位机、组态等A/D模块可编程控制器(PLC)通讯模块变频器压力变送器人机界面软启动、自耦变压器水泵机组图

3.1 系统的电气控制总框图

由以上系统电气总框图可以看出,该系统的主要硬件设备应包括以下几部分:(1) PLC及其扩展模块

(2) 变频器 (3) 水泵机组 (4) 压力变送器 (5) 液位变送器。 主要设备选型如表3.1所示:

16