内容发布更新时间 : 2025/1/8 4:02:17星期一 下面是文章的全部内容请认真阅读。
此文档收集于网络,如有侵权,请 联系网站删除
第六单元 正比例和反比例
教材分析:
本单元在比和比例,以及常见数量关系的基础上编排。通过两个数量保持商一定或者积一定的变化,教学正比例和反比例关系。让学生在建立正比例和反比例概念的同时,受到函数思想的熏陶,为第三学段的数学教学打基础。
正比例和反比例历来是小学数学的重要内容之一。与过去教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像以及简单应用,淡化脱离现实背景的判断,加强正、反比例知识与现实生活的联系,不要求应用正比例、反比例解决实际问题。全单元编排三道例题,具体安排见下表:
例1 正比例的意义 例2 正比例关系的图像及应用 例3 反比例的意义 教学目标:
1.结合实际情境认识成正比例和反比例的量,初步认识到正比例的图像是一条直线,会判断两个相关联的量的比例关系。
2.学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同的数学模型,进一步提升逻辑思维水平。
3.根据正、反比例的意义判断两种相关联的量是否成正比例或反比例,利用给出的具有正比例的数据在方格纸上画出相应的图像,并能根据图像,由具有正比例关系的一个量的数值估计另一个量的数值。
4.进一步体会数学与日常生活的密切联系,增强探究数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
教学重点:正反比例的意义 教学难点:正反比例的判断 课时安排:5课时
精品文档
此文档收集于网络,如有侵权,请 联系网站删除
第一课时:认识成正比例的量(一)
教学内容:教科书第56页的例1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:结合实际情境认识成正比例的量的特点,加深对成正比例的量的理解。
教学难点:能根据正比例的意义判断两种相关联的量是否成正比例。 教学资源:课件 教学过程: 一、谈话引入
我们已经了解了一些数量之间的关系,谁来说说你知道哪些常见的数量关系? 引导回顾:
(1)速度 时间 路程 (2)单价 数量 总价
(3)工作效率 工作时间 工作总量
引入:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的。今天,我们就来研究和认识这种变化规律。
二、互动新授 出示例1。
1.探究时间与路程两个量之间的关系。
提问:仔细观察这张表格,它为我们提供了哪些数学信息?(学生自由发言) 引导:表格中的路程和时间有关系吗?说说是怎样的关系?
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况。
精品文档
此文档收集于网络,如有侵权,请 联系网站删除
预设:(1)行驶的路程随着时间的变化面变化。
(2)行驶的时间越长,行驶路程越多;行驶的时间越短,行驶路程越少。 小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。 2.分析时间与路程这两个量的比值。
提问:表格中时间越长,路程越多;时间越短,路程越少。现在我们就来探究时间与路程之间有没有什么关系?
让学生动手写出几组对应的路程和时间的比,并求出比值。 学生观察比值,发现规律,汇报小结。
引导学生回答:通过计算,我们发现这些比值都是相等的,它们表示行驶的速度。
提问:谁能用一个式子来表示上面的规律呢? 学生回答,教师板书:
3.揭示正比例的意义。
路程 时间
= 速度(一定)
教师对两种量之间的关系作具体说明:例1中的路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和相对应时间的比的比值总是一定(也就是速度一定)时,行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例) 4.正比例意义的应用 做第57页的“试一试”
(1)要求学生根据表中的已知条件先把表格填写完整。
(2)根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
(3)让学生根据板书完整地说一说铅笔的总价和数量成什么关系?
5.用含有字母的式子表示正比例关系。
路程
谈话:通过刚才的学习,我们知道了: = 速度(一定) ,路程和时
时间
总价
= 单价(一定) ,总价和数量成正比例关间成正比例关系;那么 数量
系。如果用x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用
精品文档