内容发布更新时间 : 2025/1/6 17:45:01星期一 下面是文章的全部内容请认真阅读。
第四章 电子稳定系统ESP发展历程与趋势
ESP的ECU通过高度灵敏的传感器时刻监测车辆的行驶状态,并通过计算分析判定车辆行驶方向是否偏离驾驶员的操作意图。ESP能立刻识别出危险情况,并提前裁决出可行的干预措施使车辆恢复到稳定行驶状态,ESP的干预措施包括对车轮独立的施加制动力;在特殊工况对变速箱的干预措施;通过发动机管理系统减小发动机扭矩。
4.1 电子稳定系统ESP发展历程
1998年2月,梅赛德斯一奔驰公司首次在其A级微型轿车中成批地安装该电控车辆稳定行驶系统。它集成了电子制动防抱死系统(ABS),电子制动力分配(EBD)和牵引力控制(ASR)的基本功能;能够在几毫秒的时间内,识别出汽车不稳定的行驶趋势,比如,由于人为或环境的干扰,轿车可能进入不稳定的行驶状态;特别是驾驶员在转向时经常出现“过度转向”或“转向不足”的操作缺陷,如果得不到及时纠正,就会使车子偏离正确行驶路线,严重时,就有翻转趋势等危险。ESP系统通过智能化的电子控制方案,让汽车传动或制动系统产生所期望的准确响应,从而及时地,恰当地消除这些不稳定行驶趋势,使汽车保持在所期望的行驶路线上。
ESP能降低车辆侧滑的危险,从而降低事故的发生,显著减少因外界各种恶劣路况及驾驶员失误等造成的重大损失,极大地改善了汽车的动态行驶安全性。美国国家公路交通安全管理局 (NHTSA) 的一项报告称,在配备了 ESC 的车辆中,客车单车碰撞事故减少30%,而轿车致命的单车碰撞事故也减少30%。就运动型多用途车而言,该事故下降率甚至更高,单车碰撞事故减少67%,而致命事故则减少63%。ESP的装配率因各个国家而异。根据博世的统计,2005年德国新车ESP装配率约为72%,西欧的平均新车装配率约为44%,在日本和北美,这个数字稍低,北美约为21%,日本约为15%。而目前中国的装配率还比较低,约为3%。
4.2 电子稳定系统ESP发展趋势
4.2.1传感技术的改进
在ESP系统中使用的传感器有车辆横摆角速度传感器、横向加速度传感器、方向盘转角传感器、轮速传感器等,它们都是ESP中不可缺少的重要部件。提高他们的可靠性并降低成本一直是这方面的开发人员追求的目标。随着价格低廉的微机械
13
(Micro—Machined)加速度和横摆角速度传感器的出现,为这项技术的广泛应用创造了一定的条件。
4.2.2体积小质量轻及低成本液压制动作动系统的结构设计
这方面BOSCH公司在ESP系统中采用的结构有一定的代表性,其液压作动系统由预加压泵PCP(PrechargePump) 压力产生装置(PressureGeneratorAssembly) 液压单元HU5.0所构成。
4.2.3ESP的软硬件设计
由于ESP的ECU需要估计车辆运行的状态变量和计算相应的运动控制量,所以计算处理能力和程序容量要比ABS系统大数倍,一般多采用CPU结构。而ECU软件计算的研究则是研究的重中之重,基于模型的现代控制理论已经很难适应ESP这样一个复杂系统的控制,必须寻求鲁棒性较强的非线性控制算法。
4.2.4通过CAN完善控制功能
ESP的ECU(电子控制单元)与发动机、传动系的ECU通过CAN互联,使其能更好地发挥控制功能。例如自动变速器将当前的机械传动比、液力变矩器变矩比和所在档位等信息传给ESP,以估算驱动轮上的驱动力。当ESP识别出是在低附着系数路面时,它会禁止驾驶员挂低档。在这种路面上起步时,ESP会告知传动系ECU应事先挂入2档,这将显著改善大功率轿车的起步舒适性。
可以预见,ESP汽车安全产品不久将成为多款中、高档轿车和其它车型的标准配制,掌握ESP技术,就掌握了竞争未来汽车安全技术的主动权。所以攻克ESP设计的理论与关键技术,对提高国产汽车的自主开发能力、缩短与发达国家的差距具有重要的现实意义。它将为我国汽车工业的繁荣发展以及促进其它相关工业的繁荣发展起着重要作用,并能带来巨大的社会效益和经济效益。
德国博世公司一直是这方面技术的领先者,无论是ABS/ASR还是更先进的ESP系统,技术上都一直处于领先地位,为国际大多数汽车厂商供应ABS/ASR/ESP系统。国内汽车稳定性控制的研究还处在起步阶段,只有少数学者从事控制方法的仿真研究,而且由于缺少试验条件,研究还不十分深入,现在吉林大学、清华大学、上海交大、西北工大等高校和中国重汽集团、上海汇众汽车制造公司等企业也在开展相关的研究工作。
14
总结
在ESP系统中的车辆横摆角速度传感器、横向加速度传感器、方向盘转角传感器、轮速传感器等,它们都是ESP中不可缺少的重要部件。提高他们的可靠性并降低成本一直是这方面的开发人员追求的目标。随着价格低廉的微机械加速度和横摆角速度传感器的出现,为这项技术的广泛应用创造了一定的条件。
ESP(电子稳定系统)通过传感器得知车辆的抱死情况、车辆的横摆惯量(简单理解为车身倾侧的程度),当车辆出现失控趋势时,对特定的车轮给予额外的制运力,甚至通过调整车辆的牵引力,务求以最大的程度保持住车轮的附着力。在ESP的默默工作下,车辆遇到险情时往往能够化险为夷。对于普通驾驶者而言,ESP自然显得格外重要。通过此次课程设计学习汽车电子控制技术中电子稳定程序(ESP),掌握其结构组成及工作原理,在ABS和ASR两者的共同作用下,ESP最大限度地保证汽车不跑偏、不用尾、不侧翻,有效地保证了汽车稳定的操控安全性。
15
参考文献
[1]司景萍,高志鹰.汽车电器及电子控制技术[M].北京:北京大学出版社,2012.1. [2]邹长庚.现代汽车电子控制系统构造原理与故障诊断[M].北京:北京理工大学出版社,2000.
[3]王景祜.奔驰轿车的行驶稳定性电子控制系统[J].长春:汽车技术.2000年第三期 [4]麻友良.汽车电器与电子控制系统[M].北京:机械工业出版社,2006.12. [5]李晓.汽车车身电控系统[M].北京:机械工业出版社,2009. [6]陈家瑞.汽车构造.北京:机械工业出版社.1997年12月第一版 [7]付百学.汽车电子控制技术下册[M].机械工业出版社,2010.2.
[8]王洪龄.汽车电控系统原理与检测技术[M].山东:山东科学技术出版社,2007.
16