初二上册数学知识点总结归纳【三篇】 下载本文

内容发布更新时间 : 2024/12/25 2:33:22星期一 下面是文章的全部内容请认真阅读。

初二上册数学知识点总结归纳【三篇】

第十二章全等三角形 一、知识框架: 二、知识概念: 1.基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形.

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:

⑴边边边(SSS):三边对应相等的两个三角形全等.

⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.

⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.

⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.

⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. 4.角平分线: ⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等.

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

5.证明的基本方法:

⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共

角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过度析,找出由已知推出求证的途径,写出证明过程. 第十三章轴对称 一、知识框架: 二、知识概念: 1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等.

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质

①点P(x,y)关于x轴对称的点的坐标为P'(x,y). ②点P(x,y)关于y轴对称的点的坐标为P\ ⑷等腰三角形的性质: ①等腰三角形两腰相等.

②等腰三角形两底角相等(等边对等角).

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: