内容发布更新时间 : 2024/12/23 18:35:20星期一 下面是文章的全部内容请认真阅读。
加,即反应链数急剧增加,往往异常剧烈,甚至发生爆炸。
(3)链终止:自由基本身复合为分子,使链中止,它是销毁自由基的过程,自由基的销毁必须有第三体转移能量,这可以是气相其它分子,也可以是器壁,因此有气相销毁和器壁销毁之分。
2.由单链反应的机理推导反应速率方程 HCl气相合成反应是典型的单链反应
k1Cl2???Cl?+Cl?k2Cl??H2???HCl+H??1?k1cCl2?2?k2cCl?cH?4?k4cCl?22H??Cl2???HCl?Cl?k42Cl??M???Cl2?Mk3?3?k3cH?cCl
2实验确定其速率方程为:
dcHCl?kcH2cCl21/2 dt利用稳态法,根据其反应机理导出其速率方程,并导出表观活化能Ea与各基元反应活化能Eai的关系。
解:由稳态近似法
dcHCl??2??3?k2cH2cCl??k3cCl2cH? dtQQdcH???2??3?0 ??2??3 dtdcCl???1??2??3??4?0dt??1??4
Q?1??4
k1cCl2?k4cCl?2?k??cCl???1cCl2??k4?1/2
1/2dcHCl1/2?k1??2?2?2k2cCl?cH2?2k2??cCl1/2cH?kcCl2cH2 dt?k4?22?k?Qk?2k2?1??k4?1/2
?Ea?Ea,2?
111Ea,1?Ea,4?Ea,2?Ea,1(QE4?0) 222§11.8气体反应的碰撞理论
1.气体反应的碰撞理论
碰撞理论认为:气体分子必须通过碰撞,而且只有碰撞动能大于或等于某临界能εc的活化碰撞才能发生反应,因此求出单位时间单位体积中分子的碰撞数,以及活化碰撞所占的分数,即可导出反应速率方程。
异类双分子的碰撞:
运动着的A分子和B分子,两者质心的投影落在半径为rAB的圆截面之内,都有可能发生碰撞。rAB称为有效碰撞半径,数值上等于A分子和B分子的半径之和。
虚线圆的面积σ称为碰撞截面(collision cross section)(图11.8-1),数值上
2等于?rAB。
rABAB
图11.8-1分子间的碰撞截面和有效半径
【 “碰撞微圆柱体”】
单位时间单位体积内分子A与B的碰撞次数称为碰撞数,以ZAB表示,单位为m-3.s-1。
假设B不动,A以相对速率uAB碰撞B,则单位时间内碰撞截面在空间扫过一个圆柱形,其体积为Π(rA+rB)2uAB,则它们的碰撞频率ZA?B,即一个A分子单位时间能碰到B的次数,应等于此圆柱形的体积与气体分子B的分子浓度CB的乘积,为:
ZA?B??(rA?rB)2uABCB
若A的分子浓度为CA,则单位时间单位体积内分子A与B的碰撞总数为:
ZAB??(rA?rB)2uABCACB
其中分子浓度CA定义为NA/V,等于单位体积内的分子个数。 由分子运动论可知,气体分子A与B的平均相对速率为:
uAB?(8kBT??)1/2
式中kB为玻耳兹曼常数,kB=R/L;μ为这两个分子的折合质量,即:
??mAmB mA?mB由分子运动论可知,相撞分子对的碰撞动能???C活化碰撞数占总碰撞数的分数为:
q?e?Ec/RT式中Ec=Lεc,Ec为摩尔临界能,简称临界能。
以单位时间单位体积反应掉的反应物的分子个数表示的速率方程为:
?dCA8?kBT1/2?Ec/RT?ZABe?Ec/RT?(rA?rB)2()eCACB dt?对同类双分子反应,有:
?dCA?kT?16rA2(B)1/2e?Ec/RTCA2 dtmA2.碰撞理论与阿伦尼乌斯方程的比较 由于CA=LcA,CB=LcB,则:
?dcA8?kBT1/2?Ec/RT?L(rA?rB)2()ecAcB dt?令zAB?L(rA?rB)2(8?kBT)1/2?ZAB/LcAcB?ZABL/CACB
??
dcA?zABe?Ec/RTcAcB?kcAcB?k?zABe?Ec/RT dt§11.9势能面与过渡状态理论
过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。他们认为由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成这个过渡态必须吸取一定的活化能,这个过渡态就称为活化络合物,所以又称为活化络合物理论。
1.势能面
以A原子与双原子分子B-C沿B-C联线方向碰撞,生成分子A-B和原子C为例分析它们的反应过程,即碰撞动能转变成原子间势能,反应后多余的势能又转变为动能。
A?B-C ? A???B???C ? [A???B???C]? A与BC迎面运动 A与B-C碰撞,B-C键 A与B更靠近,B-C键更拉长, 拉长而减弱 形成活化络合物 ? A???B???C ? A-B?C A-B成键,AB与C将离开 AB与C离开 随着核间距rAB和rBC的变化,势能也随之改变。这些势能不同点在空间构成高低不平的曲面,称为势能面,如图11.9-1所示。
图1.9-1 势能面
图中R点是反应物BC分子的基态,随着A原子的靠近,势能沿着RT线升高,到达T点形成活化络合物。随着C原子的离去,势能沿着TP线下降,到P点是生成物AB分子的稳态。
在势能面上,活化络合物所处的位置T点称为马鞍点。该点的势能与反应