IC工艺流程简介上课讲义 下载本文

内容发布更新时间 : 2025/1/10 5:00:49星期一 下面是文章的全部内容请认真阅读。

精品文档

晶体的生长 晶体切片成 wafer 晶圆制作

功能设计à模块设计à电路设计à版图设计à制作光罩 工艺流程 1) 表面清洗

晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化

有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术

干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2

干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较 厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出

(d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。

SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。

3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD)

NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反应气体至反应炉的载气体精密装置;(2)使反应气体原料气化的反应气体气化室;(3)反应炉;(4)反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。

2 低压CVD (Low Pressure CVD)

此方法是以常压CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。主要特征:(1)由于反应室内压力减少至10-1000Pa而反应气体,载气体的平均自由行程及扩散常数变大,因此,基板上的膜厚及相对阻抗分布可大为改善。反应气体的消耗亦可减少;(2)反应室成扩散炉型,温度控制最为简便,且装置亦被简化,结果可大幅度改善其可靠性与处理能力(因低气压下,基板容易均匀加热),因基可大量装荷而改善其生产性。

3 热CVD (Hot CVD)/(thermal CVD)

此方法生产性高,梯状敷层性佳(不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜)等,故用途极广。膜生成原理,例如由挥发性金属卤化物(MX)及金属有机化合物(MR)等在高温中气相化学反应(热分解,氢还原、氧化、替换反应等)在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、

精品文档

精品文档

高熔点金属、金属、半导体等薄膜方法。因只在高温下反应故用途被限制,但由于其可用领域中,则可得致密高纯度物质膜,且附着强度极强,若用心控制,则可得安定薄膜即可轻易制得触须(短纤维)等,故其应用范围极广。热CVD法也可分成常压和低压。低压CVD适用于同时进行多片基片的处理,压力一般控制在0.25-2.0Torr之间。作为栅电极的多晶硅通常利用HCVD法将SiH4或Si2H。气体热分解(约650 oC)淀积而成。采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压CVD法,利用氨和SiH4 或Si2H6反应面生成的,作为层间绝缘的SiO2薄膜是用SiH4和O2在400 --4500 oC的温度下形成 SiH4 + O2 –-SiO2 + 2H2

或是用Si(OC2H5)4 (TEOS: tetra – ethoxy – silanc )和O2在750 oC左右的高温下反应生成的,后者即采用TEOS形成的SiO2膜具有台阶侧面部被覆性能好的优点。前者,在淀积的同时导入PH3 气体,就形成 磷硅玻璃(PSG: phosphor – silicate –glass)再导入B2H6气体就形成BPSG(borro – phosphor –silicate –glass)膜。这两种薄膜材料,高温下的流动性好,广泛用来作为表面平坦性好的层间绝缘膜。 4 电浆增强 CVD (Plasma Enhanced CVD)

NPCVD 法及LPCVD 法等皆是被加热或高温的表面上产生化学反应而形成薄膜。PECVD是在常压CVD或LPCVD的反应空间中导入电浆(等离子体),而使存在于空间中的气体被活化而可以在更低的温度下制成薄膜。激发活性物及由电浆中低速电子与气体撞击而产生。 光 CVD (Photo CVD)

PECVD 使薄膜低温化,且又产生如A-Si般的半导体元件。但由于薄膜制作中需考虑:(1)在除去高温(HCVD)及PECVD时掺入元件中的各种缺陷(如PECVD中带电粒子撞击而造成的损伤);(2)不易制作的元件(不纯物剖面),不希望在后面受到工程高温处理被破坏,因此希望可于低温中被覆薄膜。PCVD是解决这此问题的方法之一。 遇热分解时,因加热使一般分子的并进运动与内部自由度被激发(激发了分解时不需要的自由度),相对的,在PCVD 中,只直接激发分解必须的内部自由度,并提供活化物促使分解反应。故可望在低温下制成几无损伤的薄膜且因光的聚焦及扫描可直接描绘细线或蚀刻。 5 MOCVD (Metal Organic CVD) &分子磊晶成长(Molecular Beam Epitaxy)

CVD 技术另一重要的应用为MOCVD,此技术与MBE(Molecular Beam Epitaxy) 同为:(1)成长极薄的结晶;(2)做多层构造;(3)多元混晶的组成控制;(4)目标为化合物半导体的量产。此有装置有下列特征:(1)只需有一处加热,装置构造简单,量产装置容易设计;(2)膜成长速度因气体流量而定,容易控制;(3)成长结晶特性可由阀的开头与流量控制而定;(4)氧化铝等绝缘物上可有磊晶成长;(5)磊晶成长可有选择,不会被刻蚀。相反地亦有:(1)残留不纯物虽已改善,但其残留程度极高;(2)更希望再进一步改良对结晶厚度的控制;(3)所用反应气体中具有引火性、发水性,且毒性强的气体极多;(4)原料价格昂贵等缺点。

多层布线间的层间绝缘膜的沉积,以及最后一道工序的芯片保护膜的沉积必须在低温下(450 C 以下)下进行,以免损伤铝布线。等离子CVD 法就是为此而发明的一种方法。 6 外延生长法(LPE)

外延生长法(epitaxial growth)能生长出和单晶衬底的原子排列同样的单晶薄膜。在双极型集成电路中,为了将衬底和器件区域隔离(电绝缘),在P型衬底上外延生长N型单晶硅层。在MOS集成电路中也广泛使用外延生长法,以便容易地控制器件的尺寸,达到器件的精细化。此时,用外延生长法外延一层杂质浓度低(约10 15 cm-3)的供形成的单晶层、衬底则为高浓度的基片,以降低电阻,达到基极电位稳定的目的。LPE可以在平面或非平面衬底生长、能获得十分完善的结构。LPE可以进行掺杂,形成n-和p-型层,设备为通用外延生长设备,生长温度为300 oC-900 oC,生长速率为0.2um-2um/min,厚度0.5um-100um,外延层的外貌决定于结晶条件,并直接获得具有绒面结构表面外延层。 4) 涂敷光刻胶

光刻制造过程中,往往需采用20-30道光刻工序,现在技术主要采有紫外线(包括远紫外线)为光源的光刻技术。光刻工序包括翻版图形掩膜制造,硅基片表面光刻胶的涂敷、预烘、曝光、显影、后烘、腐蚀、以及光刻胶去除等工序。 (1)光刻胶的涂敷

精品文档

精品文档

在涂敷光刻胶之前,将洗净的基片表面涂上附着性增强剂或将基片放在惰性气体中进行热处理。这样处理是为了增加光刻胶与基片间的粘附能力,防止显影时光刻胶图形的脱落以及防止湿法腐蚀时产生侧面腐蚀(side etching)。光刻胶的涂敷是用转速和旋转时间可自由设定的甩胶机来进行的。首先、用真空吸引法将基片吸在甩胶机的吸盘上,将具有一定粘度的光刻胶滴在基片的表面,然后以设定的转速和时间甩胶。由于离心力的作用,光刻胶在基片表面均匀地展开,多余的光刻胶被甩掉,获得一定厚度的光刻胶膜,光刻胶的膜厚是由光刻胶的粘度和甩胶的转速来控制。所谓光刻胶,是对光、电子束或X线等敏感,具有在显影液中溶解性的性质,同时具有耐腐蚀性的材料。一般说来,正型胶的分辩率高,而负型胶具有高感光度以及和下层的粘接性能好等 特点。光刻工艺精细图形(分辩率,清晰度),以及与其他层的图形有多高的位置吻合精度(套刻精度)来决定,因此有良好的光刻胶,还要有好的曝光系统。 (2)预烘 (pre bake)

因为涂敷好的光刻胶中含有溶剂,所以要在80C左右的烘箱中在惰性气体环境下预烘15-30分钟,去除光刻胶中的溶剂。 (3)曝光

将高压水银灯的g线(l=436 nm), i线(l=365nm)通过掩模照射在光刻胶上,使光刻胶获得与掩模图形同样的感光图形。根据曝光时掩模的光刻胶的位置关系,可分为接触式曝光、接近式曝光和投影曝光三种。而投影曝光又可分为等倍曝光和缩小曝光。缩小曝光的分辩率最高,适宜用作加工,而且对掩模无损伤,是较常用的技术。缩小曝光将掩模图形缩小为原图形的1/5-1/10,这种场合的掩模被称为掩模原版(reticle)。使用透镜的曝光装置,其投影光学系统的清晰度R和焦深D 分别用下式表示: R=k1 λ/NA D=k2 λ/(NA) 2 λ 曝光波长 NA 透镜的数值孔径

k1、k2 为与工艺相关的参数,k1(0.6-0.8), k2(0.5)

由此可知:要提高清晰度(R变小),必须缩短波长,加大透镜数值孔径。随着曝光波长的缩短,清晰度得到改善,但是焦深却变短,对光刻胶表面平坦度提出了更严格的要求,这是一个很大的缺点。通常采用的高压水银灯,还有比高压水银灯I-line波长短的远紫外线准分子激光器(excimer laser, KrF:248nm,ArF:193nm)为曝光光源。为了 解决上述所提到的缺点,用比光的波长更短的X线(l=1-10nm)作为曝光光源,技术上有很大的进展,利用X线和电子束进行光刻时,其焦深较深,对表面平坦度没有苛刻的要求。

接近式曝光技术为光罩掩模与基板相互靠近保持较近的间隙(gap),以UV光由MASK侧面照射,将图案投射在基板上对光阻进行曝光。一般而言,光罩尺寸较基板大,所以图案将以1:1的大小转印到光阻上,此方法精度较所常用的步进机(stepper,能输出一定频率和波长的光线)或镜像投影(Mirror Projection)来得差,但其优点为产量(throughput)大,设备便宜。在光学系统中,大型的准直镜(collimate mirror)(球面或非球面)对转刻精度影响最大,以日前制作水准而言,倾斜角(declination angle)约可以做到 + -0.3以内。若倾斜角过大,则基片边缘的图案将与光罩设计的位置有所差别,将影响到total pitch(图案实际长度与设计长度的误差容忍值)的误差。而一般接近式曝光技术解析度与光罩及基板的间隙和光的波长有关。随着基片的增大,光罩也随之增大,由于光罩本身的重量会使得光罩中间部分向下弯曲。如果弯曲程度得到控制,利用光线反射原理的检测(类似光的薄膜干涉)来推算光罩与基板的距离。光罩精密对位技术,此对位技术可分为两部分,一部分利用CCD (charge coupled device)将光罩上及基板上的记号重叠后做图像分析处理,即可知目前的对位情形,再配合另一部分可精确移动的对准台(alignment stage),控制其X,Y方向及角度的位移。温度的管理,因光罩与基板两者膨胀系数不同,同一特定温度下,光照的影响将会造成误差。光罩的温度控制方法是利用经过温控后的洁净空气吹向光罩表面使光罩全面的温度分布均匀,而对基板是利用温控后的水流承载基板的基台来控制。

就曝光系统而言,所使用的UV光源为10kw的超高水银灯,经过椭圆镜,多层镀膜反射镜等光学系统后投射在光罩及光刻胶上,为了使投射光有良好的均一性及平行度以增加曝光精度,在光学系统中通常会使

精品文档