内容发布更新时间 : 2024/11/17 11:57:25星期一 下面是文章的全部内容请认真阅读。
第二十九讲 图形的平移与旋转
前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科.
几何变换是指把一个几何图形Fl变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换. 如图1,若把平面图形Fl上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换.
平移前后的图形全等,对应线段平行且相等,对应角相等.
如图2,若把平面图Fl绕一定点旋转一个角度得到图形F2,则由Fl到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角.
旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等.
通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决.
注 合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变'而相似变换,只保留线段间的比例关系,而线段本身的大小要改变. 例题求解
【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= .
思路点拨 通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形.
【例2】 如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线段x、m、n为边长的三角形的形状是( ) A.锐角三角形 B.直角三角形
C.钝角三角形 D.随x、m、n的变化而改变
- 1 -
思路点拨 把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n 集中为△DNB,只需判定△DNB的形状即可.
注 下列情形,常实施旋转变换:
(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;
(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;
(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.
【例3】 如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED—AB=AF—CD>0,求证:该六边形的各角相等.
(第4届全俄数学奥林匹克竞赛题)
思路点拨 设法将复杂的条件BC—FF=ED—AB=AF—CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换.
注 平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决.
【例4】 如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题)
思路点拨 本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中.
注 三角形中的不等关系,涉及到以下基本知识: (1)两点间线段最短,垂线段最短;
(2)三角形两边之和大于第三边,两边之差小于第三边;
(3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角.
【例5】 如图,等边△ABC的边长为a?25?123,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA、PB的长. (“希望杯”邀请赛试题)
- 2 -
思路点拨 题设条件满足勾股关系PA2+PB2=PC2的三边PA、PB、PC不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关键.
学历训练
1.如图,P是正方形ABCD内一点,现将△ABP绕点B顾时针方向旋转能与△CBP′重合,若PB=3,则PP′= .
2.如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB .
(第1题) (第2题) (第3题)
3.如图,四边形ABCD中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长为 . 4.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA'是( )
12 C.l D. (2002年荆州市中考题)
225.如图,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的顶点P是BC中点,两边
A.2?1 B.
PE、PF分别交AB、AC于点C、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=
1S△ABC;④EF=AP. 2当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )
A.1个 B.2个 C .3个 D.4个. (2003年江苏省苏州市中考题)
(第4题) (第5题) (第6题) 6.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCDd=8,则BE的长为( )
A.2 B.3 C.3 D.22 (2004年武汉市选拔赛试题)
7.如图,正方形ABCD和正方形EFGH的边长分别为22和2,对角线BD、FH都在直线l上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小
- 3 -