4.示范教案(2.1函数的概念第1课时) 下载本文

内容发布更新时间 : 2024/12/25 2:11:28星期一 下面是文章的全部内容请认真阅读。

1.2 函数及其表示 1.2.1 函数的概念

整体设计

教学分析

函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.

在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念. 三维目标

1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.

2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 重点难点

教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.

教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值. 课时安排 2课时

教学过程

第1课时 函数的概念

导入新课

思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题.

思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题. 推进新课 新知探究 提出问题

(1)给出下列三种对应:(幻灯片)

①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.

时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应 f:t→h=130t-5t2,t∈A,h∈B.

②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.

图1-2-1-1

根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应: f:t→S,t∈A,S∈B.

③国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.

“八五”计划以来我国城镇居民恩格尔系数变化情况 时间 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9 恩格尔系数y 53.8 根据上表,可知时间t的变化范围是数集A={t|1991≤t≤2001},恩格尔系数y的变化范围是数集B={S|37.9≤S≤53.8}.则有对应: f:t→y,t∈A,y∈B.

以上三个对应有什么共同特点?

(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.

(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的? (4)函数有意义又指什么?

(5)函数f:A→B的值域为C,那么集合B=C吗? 活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性. 解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.

(2)一般地,设A、B都是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.

在研究函数时常会用到区间的概念,设a,b是两个实数,且a

定义 {x|a≤x≤b} {x|aa} {x|x≤a} {x|x

(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等. (5)C?B. 应用示例

思路1

1.已知函数f(x)=x?3+(1)求函数的定义域; (2)求f(-3),f(

1, x?22)的值; 3(3)当a>0时,求f(a),f(a-1)的值. 活动:

(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使

x?3和

1有意义的自变量的取值范围;x?3有意义,则x+3≥0, x?21有意义,则x+2≠0,转化解由x+3≥0和x+2≠0组成的不等式组. x?222(2)让学生回想f(-3),f()表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f()表示自

33222变量x=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f()的值.

333(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.

分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值. 解:(1)要使函数有意义,自变量x的取值需满足?即函数的定义域是[-3,-2)∪(-2,+∞). (2)f(-3)=-3?3+

?x?3?0,解得-3≤x<-2或x>-2,

?x?2?0.1=-1;

?3?2f(

221333?3?)==?.

23382?23(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞), 即f(a),f(a-1)有意义.

1; a?211f(a-1)=a-1?3?=a?2?.

a?1?2a?1则f(a)=a?3+

点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范

围,通常转化为解不等式组.

f(x)是表示关于变量x的函数,又可以表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x为某一代数式(或某一个函数