内容发布更新时间 : 2025/1/5 17:11:42星期一 下面是文章的全部内容请认真阅读。
新题原创强化训练
第16关
一、填空题:
1.在无穷等比数列{an}中,若lim(a1?a2?????an)?n??1,则a1的取值范围是________. 3【答案】(0,)U(,)
131233?a1(1?qn),q?1?q【解析】设等比数列{an}的公比为,则其前n项和为:Sn??1?q,
?na,q?1?1若q?1时,lim(a1?a2?????an)?limna1?n??n??1, 3a1(1?qn)1?, 若q?1时,lim(a1?a2?????an)?limn??n??1?q3因此q?1且q?0,
a111?,即a1??1?q?, 1?q33112??1?q????,?; 3?33?所以当?1?q?0时,a1?当0?q?1时,a1?11?0,?1?q?????.
33??因此,a1的取值范围是(0,)U(,). 故答案为:(0,)U(,)
2.记边长为1的正六边形的六个顶点分别为A1、A2、A3、A4、A5、A6,集合
131233131233vuvvuvvvvuuuuM?{a|a?AiAj(i,j?1,2,3,4,5,6,i?j)},在M中任取两个元素m、n,则m?n?0的概率为________
【答案】
8 51【解析】以A1A4的中点为坐标原点O,以A1A4所在直线为x轴,以A1A4的垂直平分线为y轴,建立如图所示的平面直角坐标系,
因为正六边形的边长为1,
?13??1?1?13?3?3?A?,,,??,?,0?、2?所以易得:A、A4?1,0?、A5?、A6?, ???1??1?22??、A3???????222222????????uuuuruuuur?13?uuuuruuuur?33?uuuuruuuur因此A1A2?A5A4???2,2??,A1A3?A6A4???2,2??,A1A4??2,0?,A4A1???2,0?,
????uuuuruuuur?3ruuuur?1ruuuur?1ruuuur3?uuuu3?uuuu3?uuuuA1A5?A2A4??,?AA?AA?,?AA?AA??,??????3445?2?,16?2?,21?2?,A2A3?A6A5??1,0?,222??????uuuuruuuur?3uuuuruuuuruuuuruuuur3?A2A5?1,?3,A5A2??1,3,A2A6?A3A5?0,?3,A3A1?A4A6???,???2?,2????????uuuuruuuur?33?uuuuruuuuruuuuruuuurA3A2?A5A6???1,0?,A3A6??1,?3,A6A3?1,3,A4A2?A5A1????2,2??,
??????uuuuruuuur?13?uuuuruuuurA4A3?A6A1????2,2??,A5A3?A6A2?0,3;
????共18个向量.
rruuuur因此M?{a|a?AiAj(i,j?1,2,3,4,5,6,i?j)}中含有18个不同的元素.
?13??3urrurr3??33??13?又在M中任取两个元素m、n,满足m?n?0的有:??2,2??与???2,?2????2,2??;??2,?2??或??????????33??33?与???2,2??; ?2,?2??或??????13??33??33??13??33???2,?2??与???2,?2??;???2,2??与??2,2??或??2,2??或???????????33? ?1,0?与0,?3或0,3;?2,0?与0,?3或0,3;??2,0?与0,?3或0,3;???2,?2??;
???????????????3?33??33?3??33?,?,?0,?30,31,3?1,?3?,?,?1,0与或;与或;与或?;??????????????2???2??22?2??22???2?????????33??3?33??3urr3?3??,??,?,,1,?3与??1,3或;与或;共种选法,又由??24?m、n的?2??2??22????22???22????????urr2?48种; 任意性,因此满足m?n?0的情况共有:24A2????又在M中任取两个元素m、n,共有C18A2种情况; 因此,满足m?n?0的概率为:P?urr22urr488?. 22C18A251故答案为:
8. 51uuuruuruuuruuruuurx2y23.已知点P在双曲线,且OA?OP?60,OB?(0,1),??1上,点A满足PA?(t?1)OP(t?R)
916uuuruur则|OB?OA|的最大值为________
【答案】8
uuuruuuruuuruuuruuuruuuruuuruuuruuuruuuruuuruuurQ?? 【解析】PA?(t?1)OP?tOP?OP,OA?OP?tOP?OP,则OA?tOP,|OA|?|t|g|OP|,
设A(xA,yA),P(xP,yP),?(xA,yA)?t(xP,yP),
?x???xA?txP?P则?,即??yA?tyP?y?P??xA2xAyAtxA2yA29y2A,将点(,)代入双曲线中得:2??1,?xA??9t2?①, 2yAtt9t16t16t22uuuruuuruuur2uuuruuurxy22AAQOAgOP?60,?|OA|g|OP|?|t|g|OP|?|t|g(xP?yP)?|t|g(2?2)?60?②, tt9yA2yA225yA225yA215??9)?|t|g(?9)??9|t|…|yA|, 由①②得60?|t|g(22216tt16t16|t|2uuuruuuruuuruuur?|yA|?8,?|OBgOA|?|yA|?8,则|OBgOA|的最大值为8,故答案为:8.
4.设函数f?x??Asin??x?则下述结论中:
????????0,A?0?,x??0,2??,若f?x?恰有4个零点, 6?