离散数学课后习题答案五 下载本文

内容发布更新时间 : 2025/1/10 18:54:23星期一 下面是文章的全部内容请认真阅读。

第十四章部分课后习题参考答案

5、设无向图G有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G至少有多少个顶点?在最少顶点的情况下,写出度数列、?(G)、?(G)。 解:由握手定理图G的度数之和为:2?10?20

3度与4度顶点各2个,这4个顶点的度数之和为14度。 其余顶点的度数共有6度。

其余顶点的度数均小于3,欲使G的顶点最少,其余顶点的度数应都取2, 所以,G至少有7个顶点, 出度数列为3,3,4,4,2,2,2,?(G)?4,?(G)?2.

7、设有向图D的度数列为2,3,2,3,出度列为1,2,1,1,求D的入度列,并求?(D),?(D),

??(D),??(D),??(D),??(D).

解:D的度数列为2,3,2,3,出度列为1,2,1,1,D的入度列为1,1,1,2.

?(D)?3,?(D)?2,??(D)?2,??(D)?1,??(D)?2,??(D)?1

8、设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点?

解:由握手定理图G的度数之和为:2?6?12

设2度点x个,则3?1?5?1?2x?12,x?2,该图有4个顶点.

14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。

(1) 2,2,3,3,4,4,5 (2) 2,2,2,2,3,3,4,4 解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化; (2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化;

18、设有3个4阶4条边的无向简单图G1、G2、G3,证明它们至少有两个是同构的。

证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2,2,2,2;3,2,2,1;3,3,1,1。但3,3,1,1对应的图不是简单图。所以从同构的观点看,4阶4条边的无向简单图只有两个:

1 / 7

所以,G1、G2、G3至少有两个是同构的。

20、已知n阶无向简单图G有m条边,试求G的补图G的边数m?。

解:m??n(n?1)?m 221、无向图G如下图

(1)求G的全部点割集与边割集,指出其中的割点和桥; (2) 求G的点连通度k(G)与边连通度?(G)。

ae2be3解:点割集: {a,b},(d)

e1de5ee4c

边割集{e2,e3},{e3,e4},{e1,e2},{e1,e4}{e1,e3},{e2,e4},{e5}

k(G)=?(G)=1

23、求G的点连通度k(G)、边连通度?(G)与最小度数?(G)。

解:k(G)?2、?(G)?3 、?(G)?4

28、设n阶无向简单图为3-正则图,且边数m与n满足2n-3=m问这样的无向图有几种非同构的情况?

?3n?2m解:? 得n=6,m=9.

?2n?3?m 31、设图G和它的部图G的边数分别为m和m,试确定G的阶数。

解:m?m??1?1?8(m?m)n(n?1) 得n? 2245、有向图D如图

2 / 7

(1)求v2到v5长度为1,2,3,4的通路数;

(2)求v5到v5长度为1,2,3,4的回路数; (3)求D中长度为4的通路数; (4)求D中长度小于或等于4的回路数; (5)写出D的可达矩阵。

v1v4v5v2v3

解:有向图D的邻接矩阵为:

?0??1A??0??1?0??0??4A4??0??4?0?0001??01??0100??000001?,A2??01??0100??00?201010???010??20??002??02010?A3??20??002??02?00200???200??020?200?

?020?004??0004??01??0400??520004? A?A2?A3?A4??21??0400??42?254040???215??522?215?

?522?254??(1)v2到v5长度为1,2,3,4的通路数为0,2,0,0; (2)v5到v5长度为1,2,3,4的回路数为0,0,4,0; (3)D中长度为4的通路数为32; (4)D中长度小于或等于4的回路数10;

?1??1(4)出D的可达矩阵P??1??1?1?1111??1111?1111?

?1111?1111??第十六章部分课后习题参考答案

1、画出所有5阶和7阶非同构的无向树.

3 / 7