内容发布更新时间 : 2024/11/15 4:03:40星期一 下面是文章的全部内容请认真阅读。
兰州交通大学自学考试本科毕业论文
摘要
交流传动电力机车是指各种变流器供电的交流异步或同步电动机作为传动电机的电力机车或电动车组。电力牵引交流传动系统主要由受电弓﹑主断路器﹑牵引变压器﹑牵引变流器、三相交流牵引电动机﹑齿轮箱等组成。根据变流器是否带中间回路,分为交直交变流器或交交变流器两类。根据中间回路的选择原件的不同,又分为电压型系统﹑电流型系统两种基本结构。交流传动系统主要由牵引变压器﹑牵引电机﹑牵引变流器组成。
交流传动电力机车具有如下优点: 1)良好的牵引性能;
2)电网功率因数高,谐波干扰小; 3)牵引系统功率大、体积小、重量轻; 4)动态性能和黏着利用好; 干扰。
交流传动技术经过近30年的发展与直流电力机车相比有如上些优良特点,在国内外轨道交通运载装备中得到了广泛的应用。
交流调速系统目前的发展水平可以概括为: 1) 2) 3)
已从中小容量等级发展到大容量,特大容量等级,并解决了交流调速可以使交流调速系统具有高的可靠性和长期连续运行能力,从而满足可以使交流调速系统实现高性能,高精度的转速控制。除了控制部分
系统的性能指标问题,填补了直流调速系统在特大容量调速的空白。 有些场合长期不停机检的要求和对可靠性的要求。
可以得到和直流调速控制同样良好的性能外,异步电动机本身固有的优点又使整个控制系统得到更好的动态性能。采用数字锁相控制的异步电动机变频调速系统,调速精度可高达0.002%。
4)
关键词:交流传动基础;调速;启动;制动;平稳性 论文类型:应用与研究
I
5)显著的节能效果,良好的可靠性、维修性;
6)减少磨耗,降低运营成本,解决了对信号和通信设备的
交流调速系统以从直流调速的补充手段发展到与直流调速系统相竞
争、相媲美、相抗衡,并逐渐取代的地位。
交流传动电力机车性能分析
abstract
Ac drive locomotive refers to all converter power supply of asynchronous and synchronous motor communication as the drive motor electric locomotive or emus. Electric traction ac drive system mainly by the bow by electricity, Lord circuit breaker, traction transformer, traction converters, three-phase ac traction motor, gear box etc. According to whether converter with middle circuit, divided into/ZhiJiao converter or hand over two kinds of converter. According to the choice of the original middle loop is different, and divided into the voltage type system, current model system two basic structure. Ac drive system mainly by the traction transformer, traction motor, power converters composition. Ac drive locomotive has the following advantages: 1) good traction performance;
2) grid power factor is high, the harmonic interference is small; 3) traction system power is great, small volume, light weight, 4) dynamic performance and gelling use good;
5) significant energy saving effect, good reliability, maintainability;
6) reduce wear, lower operating costs, solve the signal and communications equipment of interference.
Ac drive technology after nearly 30 years of development and dc electric locomotive is compared on some good features, in domestic and international rail transit transport equipment in a wide range of applications.
Exchange speed regulation system of the current development level can be summarized as: 1) already from small and medium-sized capacity development level to the large capacity, big volume level, and solve the performance index of ac speed adjustment system, to fill the gaps in dc speed control system super capacity in the blank of speed.
2) can make the communication speed regulation system has high reliability and long-term continuous operation ability, so as to meet some situations long-term computer retrieval requirements and to keep the reliability of the requirements.
3) can make the communication speed regulation system to realize high performance, high accuracy of speed control. In addition to the control part can get and dc speed control also good performance outside, asynchronous motor itself inherent advantages and make the whole control system has better dynamic performance. The digital phase lock control variable frequency speed regulation system of induction motor speed precision can be as high as 0.002%.
4) exchange speed regulation system from the dc speed control to supplement to and development means dc speed control system in competition, comparable to, to compete, and gradually replace status
II
兰州交通大学自学考试本科毕业论文
摘要 ················································································ 错误!未定义书签。 引言 ················································································ 错误!未定义书签。 1 交流传动电力机车的基础 ················································· 错误!未定义书签。
1.1电气化系统问题——电流制与电力机车 ······················· 错误!未定义书签。 1.2电力牵引交流传动系统的结构及类型 ··························· 错误!未定义书签。 1.3三相异步交流传动···················································· 错误!未定义书签。 2 交流传动电力机车的特点、工作原理及特性 ························· 错误!未定义书签。
2.1交流传动机车的特点 ················································ 错误!未定义书签。 2.2交流传动电力机车的工作原理 ···································· 错误!未定义书签。
2.2.1工作原理 ························································ 错误!未定义书签。 2.2.2各环节的作用 ·················································· 错误!未定义书签。 2.2.3交流传动电力机车的特性 ··································· 错误!未定义书签。
3 交流传动电力机车速度调节分析 ········································ 错误!未定义书签。
3.1概述 ······································································ 错误!未定义书签。 3.2 直流传动电力机车调速与交流传动电力机车调速比较 ····· 错误!未定义书签。
3.2.1直流传动电力机车的调速 ··································· 错误!未定义书签。 3.2.2交流调速 ························································ 错误!未定义书签。
4 交流传动机车的电气制动 ················································· 错误!未定义书签。
4.1电气制动概述 ······················································· 错误!未定义书签。
4.1.1电气制动的基本原理 ········································· 错误!未定义书签。 4.1.2电气制动的形式 ··············································· 错误!未定义书签。 4.1.3电气制动的特点 ··············································· 错误!未定义书签。 4.1.4机车采用电气制动时应满足的基本要求 ················· 错误!未定义书签。 4.1.5稳定性概念 ····················································· 错误!未定义书签。 4.2交流传动电力机车上的电气制动 ······························· 错误!未定义书签。
4.2.1电阻制动 ························································ 错误!未定义书签。 4.2.2再生制动 ························································ 错误!未定义书签。 4.2.3非黏着制动 ····················································· 错误!未定义书签。
5 交流传动电力机车的微机控制 ··········································· 错误!未定义书签。
5.1列车级控制 ····························································· 错误!未定义书签。 5.2机车级控制 ····························································· 错误!未定义书签。 5.3传动及控制 ····························································· 错误!未定义书签。 5.4列车信息系统 ·························································· 错误!未定义书签。 结论 ················································································ 错误!未定义书签。
III
交流传动电力机车性能分析
致 谢 ········································································· 错误!未定义书签。 参 考 文 献 ····································································· 错误!未定义书签。
IV
兰州交通大学自学考试本科毕业论文
引言
当苏格兰人R·戴维森在1842年造出第一台标准轨距机车后开辟了电力机车时代的到来。1879年5月,德国人W·V·西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,这是电力机车首次成功的试验。1881年,法国巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造了条件:1895年,美国在巴尔的摩—俄亥俄间5.6 km长的隧道区段修建了直流电气化铁路。1903年德国的三相交流电力机车创造了每小时210 km的高速记录。
电力机车的发展取决于电气化铁道的发展。建设具有真正意义的电气化铁路首先要解决如何提供高压电,改变供电制式的问题。
接触网供给机车的电流制,分为直流制和交流制两种(交流制中又分单相交流、三相交流),这就叫供电制式。在电力车发展初期,主要是采用直流电力机车,另外也有一部分三相交流制和单相低频制电力机车,由于当时科学技术水平的制约,直流制电力机车供电电压不高,三相交流制接触网设备过于复杂, 单相低频制电力机车又需要单独的供电电网,因此电力机车初期发展较慢,20世纪20年代中期,接触网电压由由过去的几百V提高到了3000V,当时世界各国电气化铁道采用的都是直流制,接触网电压为1500伏~3000伏,为了克服直流电力牵引网电压低的缺点,1904年瑞士实验成功了单相工频交流电力机车,1950年法国试制了引燃管整流器式电力机车,1960年西德制成半导体整流器式电力机车,1958年美国发明晶闸管后, 晶闸管相控机车开始问世,使制造大功率机车用逆变器成为现实,工频单相交流制推动了电气化铁道的发展。1973年~1974年爆发石油危机之后,各国对铁路电力和内燃牵引重新进行了经济评价,电力牵引更加受到青睐。英国原先主要是发展内燃牵引,也开始重视发展电力牵引。连已经完全内燃化的美国,铁路电气化的呼声也很高。 这时候,半导体技术和微机控制技术的突破和发展推动了新型电力机车的问世。1979年,第一台E120型大功率采用异步电动机驱动的交—直—交电力机车在德国诞生,开创了电力机车发展的新纪元。
随着既有电力机车的更新换代和高速铁路的蓬勃发展,干线电力机车的研制已从直流传动转向交流传动。20世纪90年代,欧洲、日本等主要机车制造厂商几乎已停止了直流传动电力机车的生产,交流传动电力机车已成为世界电力机车发展的主流,目前世界先进国家新造的大功率电力机车几乎都采用了三相交流传动技术,单轴功率达到1000~1600KW的大功率客货通用型GTO变频调速电力机车已经广泛投入运用,在250~300km/h及其以上的高速领域,交流传动的电动车组独领风骚,在140~220km/h的快速客货运输领域,交直型电力机车(或其他直流传动机车)也正在被三相交流传动技术所取代.
- 1 -