内容发布更新时间 : 2025/1/6 1:49:50星期一 下面是文章的全部内容请认真阅读。
方案设计
一.选择题 二.填空题 三.解答题
1.(2014?四川广安,第24题8分)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值. 考点: 作图—应用与设计作图. 分析: 平行四边形ABCD的邻边长分别为1,a(a>1),剪三次后余下的四边形是菱形的4种情况画出示意图. 解答: 解:①如图,a=4, ②如图,a=, ③如图,a=, ④如图,a=, 点评: 此题主要考查了图形的剪拼以及菱形的判定,根据已知行四边形ABCD将平行四边形分割是解题关键.
2. (2014年广西南宁,第24题10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,
若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
考点: 一元一次不等式组的应用;二元一次方程组的应用..
分析: (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元,”和“10辆公交车在该线路的年均载客总和不少于680万人次,”列出不等式组探讨得出答案即可.
解答: 解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得
,
解得
答:设购买A型公交车每辆需100万元,购买B型公交车每辆需150万元. (2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得
,
解得:6≤a≤8, 所以a=6,7,8; 则10﹣a=4,3,2; 三种方案:
①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元; ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元; ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
点评: 此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.