内容发布更新时间 : 2025/1/27 6:50:51星期一 下面是文章的全部内容请认真阅读。
(数学选修2-2)第一章 导数及其应用 [基础训练A组]
一、选择题
f(x0?h)?f(x0?h)f(x0?h)?f(x0?h)?lim2[]
h?0h?0h2hf(x0?h)?f(x0?h)?2f'(x0) ?2limh?02h1.B lim2.C s'(t)?2t?1,s'(3)?2?3?1?5 3.C y'=3x2+1>0对于任何实数都恒成立 4.D f(x)?3ax?6x,f(?1)?3a?6?4,a?'2'10 35.D 对于f(x)?x3,f'(x)?3x2,f'(0)?0,不能推出f(x)在x?0取极值,反之成立 6.D y'?4x3?4,令y'?0,4x3?4?0,x?1,当x?1时,y'?0;当x?1时,y'?0 得y极小值?y|x?1?0而端点的函数值y|x??2?27,y|x?3?72,得ymin?0 ,二、填空题
1.?1 f'(x0)?3x02?3,x0??1 2.
33?an???1,?? ? y'?3x2?4,k?y'x?|1??1,t44xcosx?sinx(sinx)'x?sinx?(x)'xcosx?sinx'?3. y?
x2x2x21111,k?y'|x?e?,y?1?(x?e),y?x xeee55'25.(??,?),(1,??) 令y?3x?2x?5?0,得x??,或x?1
334.,x?ey?0 y?'1e三、解答题
1.解:设切点为P(a,b),函数y?x3?3x2?5的导数为y'?3x2?6x
切线的斜率k?y'|x?a?3a2?6a??3,得a??1,代入到y?x?3x?5 得b??3,即P(?1,?3),y?3??3(x?1),3x?y?6?0。
2.解:y?(x?a)(x?b)(x?c)?(x?a)(x?b)(x?c)?(x?a)(x?b)(x?c) ?(x?b)(x?c)?(x?a)(x?c)?(x?a)(x ?b
43223.解:f?(x)?5x?20x?15x?5x(x?3)(x?1),
''''32当f?(x)?0得x?0,或x??1,或x??3,
∵0?[?1,4],?1?[?1,4],?3?[?1,4] 列表:
x f'(x) f(x) ?1 (?1,0) + ↗ 0 0 1 (0,4) + ↗ 0 0
又f(0)?0,f(?1)?0;右端点处f(4)?2625;
∴函数y?x5?5x4?5x3?1在区间[?1,4]上的最大值为2625,最小值为0。 4.解:(1)y'?3ax2?2bx,当x?1时,y'|x?1?3a?2b?0,y|x?1?a?b?3,
即??3a?2b?0,a??6,b?9
?a?b?3(2)y??6x3?9x2,y'??18x2?18x,令y'?0,得x?0,或x?1
?y极小值?y|x?0?0
(数学选修2-2)第一章 导数及其应用 [综合训练B组]
一、选择题
1.C y'?3x2?6x?9?0,x??1,得x?3,当x??1时,y'?0;当x??1时,y'?0 当x??1时,y极大值?5;x取不到3,无极小值 2.D limh?0f(x0?h)?f(x0?3h)f(x0?h)?f(x0?3h)?4lim?4f'(x0)??12
h?0h4h'2'23.C 设切点为P,k?f(a)?3a?1?4,a??1, 0(a,b),f(x)?3x?1把a??1,代入到f(x)=x3+x-2得b??4;把a?1,代入到f(x)=x3+x-2得b?0,所以P0(1,0)和(?1,?4)
4.B f(x),g(x)的常数项可以任意
18x3?112?0,(2x?1)(4x?2x?1)?0,x?5.C 令y?8x?2? 2xx2'(lnx)'x?lnx?x'1?lnx''??0,x?e,6.A 令y?当x?e时,y?0;当x?e时,y?0,22xx'11y极大值?f(e)?,在定义域内只有一个极值,所以ymax?
ee二、填空题
?3 y'?1?2sixn?0x,?,比较0,,处的函数值,得ymax??3 6662633'2'?)7f,?(1)y1?0,?1x0?7(y时?1),x? 0?,2.? f(x)?3x?4,f(177222'23.(0,) (??,0),(,??) y??3x?2x?0,x?0,或x?
3331.
4.a?0,且b2?3ac f'(x)?3ax2?2bx?c?0恒成立,
??????a?02则?,a?0,且b?3ac 2???4b?12ac?025.4,?11 f'(x)?3x?2ax?b,'f(1)?2a?b?3?0,f(1)?2a?a?b? ?110 ?三、解答题
?2a?b??3?a??3?a?4,当a??3时,x?1不是极值点 ,,或??2?b??11?a?a?b?9?b?3''2'21.解:y?2x,k1?y|x?x0?2x0;y?3x,k2?y|x?x0?3x0 k1k2??1,6x303'??1,x?0?36。 62.解:设小正方形的边长为x厘米,则盒子底面长为8?2x,宽为5?2x V?(8?2x)(5?2x)x?4x3?26x2?40x V?12x?52x?40,令V?0,得x?1,或x?'2'1010,x?(舍去) 33 V极大值?V(1) ?1,在定义域内仅有一个极大值,8 ?V最大值?18
3.解:(1)f(x)?ax4?bx2?c的图象经过点(0,1),则c?1,
f'(x)?4ax3?2bx,k?f'(1)?4a?2b?1,
切点为(1,?1),则f(x)?ax?bx?c的图象经过点(1,?1) 得a?b?c??1,得a?4259,b?? 22f(x)?5492x?x?1 22'3(2)f(x)?10x?9x?0,?310310?x?0,或x? 1010