高中数学 2.2.1向量的加法运算及其几何意义教学设计 新人教A版必修4 下载本文

内容发布更新时间 : 2024/11/16 8:34:25星期一 下面是文章的全部内容请认真阅读。

2.2.1《向量的加法运算及其几何意义》教学设计

教材版本:人民教育出版社A版,普通高中课程标准实验教材,数学必修4

教学内容:高中数学必修4,第二章《平面向量》第二节向量的加法运算及其几何意义第1课时 一、 教学目标

知识目标:理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则 作出两个向量的和;掌握向量加法的交换律与结合律,并会用它们进行向量运算.

能力目标:经历向量加法概念、法则的建构过程,感受和体会将实际问题抽象为 数学概念的思想方法,培养学生发现问题、分析问题、解决问题的能力.

情感目标:经历运用数学来描述和刻画现实世界的过程,体验探索的乐趣,激发 学生的学习热情.培养学生勇于探索、敢于创新的个性品质. 二、 重点与难点

重点:向量加法的定义与三角形法则的概念建构;以及利用法则作两个向量的和向量. 难点:理解向量的加法法则及其几何意义. 三、 教法学法

教法运用了“问题情境教学法”、“启发式教学法”和“多媒体辅助教学法”. 学法采用以“小组合作、自主探究”为主要方式的自主学习模式. 四、 教学过程

新课程理念下的教学过程是一个内容活化、创生的过程,是一个学生思考、体验的过程,更是一个师生互动、发展的过程.基于此,我设定了下面几个教学环节 一、复习回顾

1、向量、平行向量、相等向量的含义是什么?

2、 用有向线段表示向量,向量的大小和方向是怎样反映的?什么叫零向量和单位向量? 二、合作探究

【问题1】如图,某人从点A到点B,再从点B改变方向到点C,则两次位移的和可用哪个向量表示?由此可得什么结论?

学生活动:学生讨论,集体回答

点评:位移是向量.位移可以相加,所以向量可以进行加法运算。 2、向量加法的定义

B如图,已知非零向量a、b,在平面内

abAC取一点A,作AB?a,BC?b,则AC叫作a与b的和。 两个向量可以相加,并且两个向量的和还是一个向量。 一般地,求两个向量和的运算,叫做向量的加法。

点评:加法的定义其实是用数学的作图语言来刻画的,这种方法经常出现在几何中,这一点也更好的体现了向量加法具有的几何意义和向量数形结合的特征. 3、向量加法的运算法则

【问题2】上面整个计算过程中我们作了一个什么图形?你能不能结合图形给这种运算法则起个名字?

学生活动:学生讨论,集体回答

(1)三角形法则:定义中求向量和的方法,称为向量加法的三角形法则

位移的合成可以看成向量加法三角形法则的物理模型。 (2)平行四边形法则

【问题3】图1表示橡皮条在两个力F1和F2的作用下,沿GE方向伸长了EO;图2表示橡皮条在一个力F的作用下,沿相同方向伸长了相同长度.从力学的观点分析,力F与F1、F2之间的关系如何? 学生活动:集体回答

【问题4】通过刚才这个过程你发现对向量进行加法运算还可以怎样进行? 学生活动:学生讨论,集体回答

点评:以同一点O为起点的两个已知向量a、b为邻边作平行四边形OACB,则以O为起点的对角线OC就是a与b的和。我们把这种作两个向量和的方法叫作向量加法的平行四边形法则 力的合成可以看作向量加法平行四边形法则的物理模型。 三、例题精解

例1、已知向量a、b,分别用向量加法的三角形法则与向量加法的平行四边形法则

作出向量a+b

教学活动:师板演作图过程,生集体回答注意事项 小试牛刀

学生活动:学生自主解答,生代表展示讲解做题过程 点评:使学生熟练掌握向量加法的两个运算法则 四、模的关系探究 【问题4】想一想

ab(1)若两向量互为相反向量,则它们的和是什么?(2)零向量和任一向量a的和是什么? (3)

a?b ,|a+b|和

a?b的大小关系如何?何时能取到等号呢?

学生活动:学生讨论,代表回答

设计意图:通过三角形三边关系,让学生找出向量的模与他们和的模之间的大小关系。 五、类比联想,探究性质

1、你能说出实数相加有哪些运算律吗?类比实数加法的运算律,向量是否也有运算律? 2、作图验证

(1)b+a的结果与a+b是否相同?