2014年考研定积分经典例题(完美讲析) 下载本文

内容发布更新时间 : 2024/5/16 4:05:20星期一 下面是文章的全部内容请认真阅读。

定积分常见问题

一、关于含“变上限积分”的问题

例1、求下列导数x3(1)F(x)?x2x3?xxdt1?t4sinx1?t4

(2)F(x)??dt

2(3)F(x)??tf(x2?t2)dt

0例2、求下列极限

1(1)求lim2x??x(2)求limx?0x2t?x(1?t)edt ?02?x0tf(x2?t2)dtx4,f(x)连续,f(0)?0,f?(0)?2

例3

1(1)求连续函数f(x),使之满足?f(tx)dt?f(x)?xsinx

0(2)、设f(x)??lnt1dt,其中x?0,求f(x)?f() 1?tx1x(3)设f(x)在x?0可微。其反函数为g(x),且f(x)?1g(t)dt?132x?8,求f(x)3??

二、定积分计算的有关问题

例1、(常见形式积分)4?(1)?1dxx(1?x)(2)?xdx(3).1?cos2x04arcsinxdx ?x(1?x)14122a(4)?aln2ax2?a2dx?2xdx(a?0)(5)1?edx(6) ??22x4a?x00x?

1

例2、(分段函数,绝对值函数)

l?kx,0?x?xb??2[(1)?xdx(a?b)(2)、设f(x)??,求?(x)??f(t)dt

la0?c,?x?l??21(3)?tt?xdt

0x(4).?0??sinx,0?x???2f(t)g(x?t)dt,(x?0)其中当x?0时,f(x)?x,而g(x)??

??0,x???2例3(对称区间上积分)

1(1)?(1?sinx)(ex?e?x)dx

?1?(2)??xsinxlnx?1?x??b121?2?2?2sinxdx ?ln(1?x)?dx(3)??x???1?e42?4例4、[形如?af(x)dx的积分]

f(x)?g(x)??24(1)?2esinxdx(2)?sinxcosxdxe?eln(9?x)?ln(x?3)0ln(9?x)(3)?dx, ?1?(tgx)02

例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)

常用结论??1.??020f(sinx)dx??20f(cosx)dx),f(sinx)dx,

2.?xf(sinx)dx????2??0?n?1n?331?????,n为正偶自然数??nn?2422nn3.?2sinxdx??2cosxdx??,00?n?1?n?3?4?2,n为大于1的正奇数?nn?253?

2

?f(sinx)(1)?dxf(sinx)?f(cosx)0?210102??20(sinx)(sinx)333?(cosx)

dx

?2sinx?cosx(2)、dx(3)?lnsinxdx?4?sinx?cosx00?xsin2nxxsin3x?(4)?dx (5)计算I?dx,n?Nn22n2n?01?cosxsinx?cosx0?(6)?xsin6xcos4xdx

0?(7)设f(x)在???,??上连续,且满足f(x)??x?f(x)sinxdx,求f(x)

1?cos2x???(8)求?(x?1)?1121001dx(9)?n?01?sin2xdx

(10)F(x)??

x?2?xesintsintdt,则F(x)是(A.正常数B负常数C恒为零D不是常数例6 利用适当变量代换计算积分

?4(1)?ln(1?tgx)dx(2)0ln(1?x)dx 2?1?x0??01(3)?n?0xsinxdx(4)求?20dx(1?x2)(1?x?)

例7(其它)

?(1)、设f(x)在[0,]上连续,且f(x)?xcosx??f(t)dt,求f(x)

20221?22(2)设f(x)?x?x?f(x)dx?2?f(x)dx,求f(x)

00(3)设y?y(x)满足y?(x)?arcsin(x?1)2,(0?x?1),求?y(x)dx

011(4)、设f(x)连续,且满足?tf(2x?t)dt?arctanx2,f(1)?1,求?f(x)dx的值201?2cosxsinxcosx(5)已知:dx?A,求dx, 2??(x?2)x?100x2?3

?(6)设F(a)??ln(1?2acosx?a2)dx,求F(?a),F(a2)

0a?xay(2a?y)(7)、设f(x)?1?e0dy,求?f(x)dx

0(8)?xm(1?x)ndx

0

例8、计算下列广义积分(基本题)

1dx(2)dx,(1)?,2?21?x1x1?(lnx)??51??e??(3)?0lnxdx, 21?x(4)?1dx(5)?cos(lnx)dx,(x?1)(?x?5)0

例9

(1)(2).???0??te?ptdt(p是常数,且p?0) xe?xdx(1?e?x)2???0

例10、计算下列广义积分(广义积分变量代换例)

3(1)?0dxxx?2(2)?0xln(1?x2)(1?x)322dx

例11.xcosxsinx(1)已知广义积分?dx收敛于A,试用A表示广义积分dx的值 222?(1?x)1?x00sinx?sinx2(2)已知?dx?,求?()dxx2x00????????经典例题

例1求lim13232(n?2n???3n3). 2n??n解将区间[0,1]n等分,则每个小区间长为?xi?11111,然后把2??的一个因子乘入和

nnnnn式中各项.于是将所求极限转化为求定积分.即

4

lim113132n1323233333==. lim(????)(n?2n???n)xdx?n??nn??n2nnn?04例2?202x?x2dx=_________.

2解法1由定积分的几何意义知,?与x轴所围成的图形的面积.故?022x?x2dx等于上半圆周(x?1)2?y2?1 (y?0) 2x?x2dx=

0?. 2解法2本题也可直接用换元法求解.令x?1=sint(??2?t??2),则

??2?2?202x?xdx=?2?1?sintcostdt=2?21?sintcostdt=2?2cos2tdt=

?2200? 2例3 比较?exdx,?exdx,?(1?x)dx.

2221121()e?x1?.解法1在[1,2]上,有ex?ex.而令f(x)?ex?(x?1),则f?x当x?0时,f?(x)?0,f(x)在(0,??)上单调递增,从而f(x)?f(0),可知在[1,2]上,有ex?1?x.又

2?12f(x)dx???f(x)dx,从而有?(1?x)dx??exdx??exdx.

1222xx221112e?2解法2在[1,2]上,有e?e.由泰勒中值定理e?1?x?x得ex?1?x.注意到

2!x?12f(x)dx???f(x)dx.因此

12?例4 估计定积分?ex20212(1?x)dx??exdx??exdx.

22112?xdx的值.

2解设 f(x)?ex2?x, 因为 f?(x)?ex?x(2x?1), 令f?(x)?0,求得驻点x?21, 而 21?1f(0)?e?1, f(2)?e, f()?e4,

20故

e?14?f(x)?e2,x?[0,2],

从而

2e所以

?14??ex0022?xdx?2e2,

?2e??e22x2?xdx??2e.

b?14例5设f(x),g(x)在[a,b]上连续,且g(x)?0,f(x)?0.求lim?g(x)nf(x)dx.

an??5