2014年考研定积分经典例题(完美讲析) 下载本文

内容发布更新时间 : 2025/1/4 14:18:14星期一 下面是文章的全部内容请认真阅读。

解由于f(x)在[a,b]上连续,则f(x)在[a,b]上有最大值M和最小值m.由f(x)?0知M?0,m?0.又g(x)?0,则

nm?g(x)dx??g(x)nf(x)dx?nM?g(x)dx.

aaan??n??bbb由于limnm?limnM?1,故

lim?g(x)nf(x)dx=?g(x)dx.

n??abba例6求lim?n?pn??nsinxdx, p,n为自然数. x解法1利用积分中值定理 设f(x)?sinx, 显然f(x)在[n,n?p]上连续, 由积分中值定理得 xn?psinxsin?dx??p, ??[n,n?p], ?nx?当n??时, ???, 而sin??1, 故

lim?n?pn??nsinxsin?dx?lim?p?0.

????x解法2利用积分不等式 因为

n?psinxn?p1sinxn?p, dx??dx??dx?lnnnxxxn?而limlnn??n?pnn?p?0,所以 nlim?n?pn??nsinxdx?0. xxn例7求lim?dx.

n??01?x1解法1由积分中值定理?f(x)g(x)dx?f(?)?g(x)dx可知

aabbxn1=dx?01?x1??1?10xndx,0???1.

lim?xndx?limn??01111?1, ?0且?n??n?121??1故

xnlim?dx?0. n??01?x解法2因为0?x?1,故有

xn0??xn. 1?x6

于是可得

1xn0??dx??xndx.

01?x01又由于

?因此

10xndx?1?0(n??). n?11xnlim?dx=0. n??01?x例8设函数f(x)在[0,1]上连续,在(0,1)内可导,且4?3f(x)dx?f(0).证明在(0,1)内存在

41一点c,使f?(c)?0.

证明 由题设f(x)在[0,1]上连续,由积分中值定理,可得

13f(0)?4?3f(x)dx?4f(?)(1?)?f(?),

443其中??[,1]?[0,1].于是由罗尔定理,存在c?(0,?)?(0,1),使得f?(c)?0.证毕.

4例9(1)若f(x)??e?tdt,则f?(x)=___;(2)若f(x)??xf(t)dt,求f?(x)=___.

0xx22xdv(x)f(t)dt?f[v(x)]v?(x)?f[u(x)]u?(x).

dx?u(x)解(1)f?(x)=2xe?x?e?x;

(2)由于在被积函数中x不是积分变量,故可提到积分号外即f(x)?x?f(t)dt,则可得

0x42f?(x)=?0f(t)dt?xf(x).

x例10 设f(x)连续,且?解对等式?x3?10x3?10f(t)dt?x,则f(26)=_________.

f(t)dt?x两边关于x求导得

f(x3?1)?3x2?1,

113,令得,所以. x?1?26x?3f(26)?3x227x1例11函数F(x)??(3?)dt(x?0)的单调递减开区间为_________.

1t1111解F?(x)?3?,令F?(x)?0得?3,解之得0?x?,即(0,)为所求.

99xx故f(x3?1)?例12求f(x)??(1?t)arctantdt的极值点.

0x解由题意先求驻点.于是f?(x)=(1?x)arctanx.令f?(x)=0,得x?1,x?0.列表如下:

x 0 (??,0) (0,1) (1,??) 1 0 0 f?(x) - + - 7

故x?1为f(x)的极大值点,x?0为极小值点.

例13已知两曲线y?f(x)与y?g(x)在点(0,0)处的切线相同,其中 g(x)??arcsinx0e?tdt,x?[?1,1],

23试求该切线的方程并求极限limnf().

n??n解由已知条件得

f(0)?g(0)??e?tdt?0,

002且由两曲线在(0,0)处切线斜率相同知

f?(0)?g?(0)?e?(arcsinx)1?x22?1.

x?0故所求切线方程为y?x.而

3f()?f(0)3limnf()?lim3?n?3f?(0)?3. n??3nn???0n例14 求limx?0??0xx20sin2tdt;

t(t?sint)dt4x3(x2)22x(sinx2)2解lim0=lim=(?2)?lim=(?2)?lim

x?0(?1)?x?(x?sinx)x?01?cosxx?0x?sinxx?0?t(t?sint)dt0x?x2sin2tdt12x2=(?2)?lim=0.

x?0sinx注 此处利用等价无穷小替换和多次应用洛必达法则.

x1t2dt?1成立. 例15试求正数a与b,使等式lim2x?0x?bsinx?0a?tx22x1t21x2a?xdt=lim?lim解lim=lim

22x?0x?bsinx?0x?0x?01?bcosxx?01?bcosxa?ta?xx2?lim?1,

x?01?bcosxa1由此可知必有lim(1?bcosx)?0,得b?1.又由

x?01x22lim??1, ax?01?cosxa得a?4.即a?4,b?1为所求. 例16设f(x)??

sinx0sint2dt,g(x)?x3?x4,则当x?0时,f(x)是g(x)的().

8

A.等价无穷小. B.同阶但非等价的无穷小. C.高阶无穷小. D.低阶无穷小.

f(x)sin(sin2x)?cosx解法1由于 lim ?limx?0g(x)x?03x2?4x3cosxsin(sin2x) ?lim?limx?03?4xx?0x21x21?lim2?. 3x?0x3故f(x)是g(x)同阶但非等价的无穷小.选B. 解法2 将sint2展成t的幂级数,再逐项积分,得到 f(x)??sinx0[t2?12311(t)??]dt?sin3x?sin7x??, 3!342则

1111sin3x(?sin4x??)?sin4x??f(x)1342342. lim?lim?lim?34x?0g(x)x?0x?0x?x1?x3例17证明:若函数f(x)在区间[a,b]上连续且单调增加,则有

?baxf(x)dx?a?bbf(x)dx. 2?axa证法1 令F(x)=?tf(t)dt?F?(x)=xf(x)?a?xxf(t)dt,当t?[a,x]时,f(t)?f(x),则 ?a21xa?xx?a1x=f(t)dt?f(x)f(x)?f(t)dt

2?a222?a?x?a1xx?ax?af(x)??f(x)dt=f(x)?f(x)?0. 22a22故F(x)单调增加.即F(x)?F(a),又F(a)?0,所以F(x)?0,其中x?[a,b]. 从而

F(b)=?xf(x)dx?aba?bbf(x)dx?0.证毕. ?a2证法2由于f(x)单调增加,有(x?a?ba?b)[f(x)?f()]?0,从而 22?ba(x?a?ba?b)[f(x)?f()]dx?0. 22bba?ba?ba?ba?bba?b)f(x)dx??(x?)f()dx=f()?(x?)dx=0.

aa22222即

?故

a(x??例18计算?|x|dx.

?12baxf(x)dx?a?bbf(x)dx. 2?a

分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解?|x|dx=?(?x)dx???1?12020x20x225xdx=[?]?1?[]0=.

2229

注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 11311,则是错误的.错误的原因则是由于被积函数在x?0处间断且在被dx?[?]??2??2x2x6x23积区间内无界.

例19 计算?max{x2,x}dx.

02分析 被积函数在积分区间上实际是分段函数

?x21?x?2. f(x)???x0?x?1解?max{x,x}dx??xdx??0022121x21x321717xdx?[]0?[]1???

2323621例20设f(x)是连续函数,且f(x)?x?3?f(t)dt,则f(x)?________.

0解 因f(x)连续,f(x)必可积,从而?f(t)dt是常数,记?f(t)dt?a,则

00f(x)?x?3a,且?0(x?3a)dx??0f(t)dt?a.

1111所以

11,即[x2?3ax]1?a?3a?a, 02213从而a??,所以f(x)?x?.

44x?3x2, 0?x?1例21设f(x)??,F(x)??f(t)dt,0?x?2,求F(x), 并讨论F(x)的连

0?5?2x,1?x?2续性.

解(1)求F(x)的表达式.

F(x)的定义域为[0,2].当x?[0,1]时,[0,x]?[0,1], 因此

xF(x)??f(t)dt??3t2dt?[t3]0?x3.

00xx当x?(1,2]时,[0,x]?[0,1]?[1,x], 因此, 则

2x2F(x)??3t2dt??(5?2t)dt=[t3]10?[5t?t]1=?3?5x?x,

011x故

3??x, 0?x?1F(x)??. 2???3?5x?x,1?x?2 (2) F(x)在[0,1)及(1,2]上连续, 在x?1处,由于

x?1limF(x)?lim(?3?5x?x2)?1, limF(x)?limx3?1, F(1)?1. ????x?1x?1x?1因此, F(x)在x?1处连续, 从而F(x)在[0,2]上连续.

10