精品解析:【市级联考】四川省绵阳市2019届高三第二次(1月)诊断性考试数学(文)试题(解析版) 下载本文

内容发布更新时间 : 2025/1/23 9:32:14星期一 下面是文章的全部内容请认真阅读。

=5,

,∴

.∴ ∴ y关于x的线性回归方程为.

(2)当x=8时,.满足|74-73|=1<2,当x=8.5时,.满足|75-75|=0<2,

∴ 所得的线性回归方程是可靠的.

【点睛】本题考查线性回归方程的求法,考查了线性回归分析的应用,考查解决实际问题的能力,是一个综合题目,属于基础题.

19.△ABC的内角A. B. C的对边分别为a,b,c,己知(1)求角A的大小; (2)若b+c=

.

,求△ABC的面积。

=b(c-asinC)。

【答案】(1);(2)【解析】 【分析】

(1)由条件可得ccosA=c-asinC.由正弦定理得sinA+cosA=.化简得sin(A+)=,解得A即可. (2)由余弦定理得3=b2+c2-bc,即3=(b+c)2-3bc,又b+c=【详解】(1)∵ ∴ 即

cbcosA=b(c-asinC),

ccosA=c-asinC.由正弦定理得sinCcosA=sinC-sinAsinC,

,解得bc=.可求△ABC面积.

∵ sinC0, ∴

cosA=-sinA,即sinA+cosA=.

所以sinA+cosA=,即sin(A+)=

∵ 0

(2)在△ABC中,由余弦定理得 a2=b2+c2-2bccosA,

由(1)得A=,所以a2=b2+c2-2bccos,即a2=b2+c2-bc. ∵ a=, ∴ 3=b2+c2-bc,即3=(b+c)2-3bc. 已知b+c=

,解得bc=. 所以△ABC的面积为

.

【点睛】本题考查了正弦定理余弦定理的应用、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.己知椭圆C:标原点.

(1)若直线l过点F1,且|AB|=

,求k的值;

的左右焦点分别为F1,F2,直线l:y=kx+m与椭圆C交于A,B两点.O为坐

(2)若以AB为直径的圆过原点O,试探究点O到直线AB的距离是否为定值?若是,求出该定值;若不是,请说明理由。 【答案】(1)【解析】 【分析】

y1),B(x2,y2),(1)由条件得到m=2k,设A(x1,联立弦长公式|AB|

,代入整理,解得.

结合韦达定理得到3m2=8k2+8.利整理得(1+2k2)x2+8k2x+8k2-8=0.由

;(2)

.

(2)设直线l方程y=kx+m,A(x1,y1),B(x2,y2).由条件用点O到直线AB的距离公式求得d2=,从而得到定值.

【详解】(1)因为直线l过点F1(-2,0),所以m=2k即直线l的方程为y=k(x+2). 设A(x1,y1),B(x2,y2). 联立

整理得(1+2k2)x2+8k2x+8k2-8=0.

∴ x1+x2=,x1x2=. 由弦长公式|AB|=,

代入整理得,解得k2=1.∴.

(2)设直线l方程y=kx+m,A(x1,y1),B(x2,y2). 联立

整理得(2k2+1)x2+4kmx+2m2-8=0.

∴ x1+x2=∴

,x1x2=. 以AB为直径的圆过原点O,即.

x1x2+ y1y2=0.将y1=kx1+m,y2= kx2+m代入,整理得

,x1x2=

代入,

(1+k2)x1x2+km(x1+x2)+m2=0. 将x1+x2=

整理得3m2=8k2+8.设点O到直线AB的距离为d, 于是d2=

, 故O到直线AB的距离是定值为

【点睛】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及分析问题解决问题的能力,属于中档题. 21.己知函数

(1)试讨论f(x)的单调性; (2)若函数

有且只有三个不同的零点,分别记为x1,x2,x3,设x1<x2<x3,且的最大值

.

是e2,求x1x3的最大值. 【答案】(1)当m≤0时,函数

在区间(0,+∞)上单调递增;当m>0时, 函数

在(0,)上单调递

增,函数【解析】 【分析】

在(,+∞)上单调递减;(2).

(1)求出函数的导数,对m分类讨论,解得导函数大于0及小于0的范围,即可得到单调性. (2)由条件可将问题转化函数y=m的图象与函数

x3>e.的图象有两个交点.分析可得0

,则t∈.由,解得 构造,t∈,利用导函数转化

求解即可.

【详解】(1)函数的定义域为(0,+∞).

由已知可得当m≤0时,当m>0时,由所以函数

>0,故

在区间(0,+∞)上单调递增;

;由

0,解得

>0,解得

在(0,)上单调递增,在(,+∞)上单调递减.

在区间(0,+∞)上单调递增;

综上所述,当m≤0时,函数当m>0时, 函数函数

在(0,)上单调递增,

在(,+∞)上单调递减.

(2)∵ 函数g(x)=(x-e)(lnx-mx)有且只有三个不同的零点, 显然x=e是其零点, ∴ 函数可转化为方程

存在两个零点,即

有两个不等的实数根.

在区间(0,+∞)上有两个不等的实数根,

的图象有两个交点.

即函数y=m的图象与函数∵ ∴ 由由

, >0,解得<0,解得x>e,故

,故

在上单调递增;

在(e,+∞)上单调递减;

的图象的交点分别在(0,e),(e,+∞)上,

故函数y=m的图象与

即lnx-mx=0的两个根分别在区间(0,e),(e,+∞)上, ∴ g(x)的三个不同的零点分别是x1,e,x3,且0e. 令

,则t∈

由,解得

故,t∈.

令,则.

令所以所以即

≤在区间

,即=

,则

上单调递增,即在区间,

>

上单调递增,

所以,即x1x3≤,

所以x1x3的最大值为.

【点睛】本题考查函数的导数的综合应用,函数的单调性以及函数的最值以及函数的极值的求法,构造法的应用,考查转化思想以及计算能力.

(二)选考题:共10分。请考生在第22, 23题中任选一题做答。如果多做.则按所做的第一题记分。

22.在平面直角坐标系xoy中,曲线C的参数方程是

x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为:(1)求曲线C的极坐标方程; (2)设直线θ=求t的值。 【答案】(1)【解析】 【分析】

(1)由曲线C的参数方程,可得曲线C的普通方程,再将其化为极坐标方程. (2)将

代入

中,求得|OM|,将

代入

中,得

,得

;(2)

.

与直线l交于点M,与曲线C交于P,Q两点,已知|OM|?|OP|?|OQ)=10,

(θ为参数).以坐标原点O为极点,

到|OP||OQ|=5.再根据|OM||OP||OQ|=10,解得t值即可. 【详解】(1)由曲线C的参数方程,可得曲线C的普通方程为即

. ∵

, .

故曲线C的极坐标方程为