内容发布更新时间 : 2024/12/23 21:41:33星期一 下面是文章的全部内容请认真阅读。
苏教版七年级数学下册知识点(详细全面精华)
第七章 图形的认识(二)
一、直线被第三条直线所截形成8个角。(3线8角) 1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。 2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。 二、 平行线及其判定
(一) 平行线
1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。) 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c
(二)平行线的判定:
1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)
2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)
3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)
4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 b ∥ c 。
推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
三、 平行线的性质
(一)平行线的性质
1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等) 2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等) 3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等) (二)命题、定理、证明
1.命题的概念:判断一件事情的语句,叫做命题。 2.命题的组成:每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么
2
??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:正确的命题,题设成立,结论一定成立。
4.假命题:错误的命题,题设成立,不能保证结论一定成立。
5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据) 6.证明:推理的过程叫做证明。 四、平移
1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。 2.平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。①对应点的连线平行且相等;②对应线段相等;③对应角相等。
第八章 幂的运算
一、幂的运算:
乘方的概念: 求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 n a 中,a 叫做底数,n 叫做指数。
乘方的性质:
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0 1、同底数幂的乘法法则:am?an?am?n(m,n都是正整数)
同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 如:(a?b)2?(a?b)3?(a?b)5
2、幂的乘方法则:(am)n?amn(m,n都是正整数) 幂的乘方,底数不变,指数相乘。如:(?35)2?310
幂的乘方法则可以逆用:即amn?(am)n?(an)m 如:46?(42)3?(43)2 3、积的乘方法则:(ab)n?anbn(n是正整数)。积的乘方,等于各因数乘方的积。
如:(?2x3y2z)5=(?2)5?(x3)5?(y2)5?z5??32x15y10z5
4、同底数幂的除法法则:am?an?am?n(a?0,m,n都是正整数,且m?n)
3