二值图象的形态学处理 下载本文

内容发布更新时间 : 2025/1/11 23:28:22星期一 下面是文章的全部内容请认真阅读。

第四章 二值图象的形态学处理4.1形态滤波器设计 4 1.1数学形态学滤波特点

由于随机噪声的存在,使观测到的图象变质。因此降低或滤除噪声,使图象变得清晰,增强视觉效果是图象处理的一个重要的任务。消除了噪声的图象其特征是:图象的边缘、细的线条和小的图象细节是清晰的、分明的。同时图象元素间区域中的变化是均匀的、光滑的。为了滤除图象中的噪声,需要建立各种形式的滤波器。线性滤波器对图象的Fourier频谱的各个频段进行滤波和修改。但是由于噪声和图象边缘具有相同的频率分量,因此常常在滤波噪声的同时又模糊了边界。中值滤波器属于非线性滤波器,由于它具有冲激响应为零和边缘保持特性,近年来发展很快。但在多维基元处理中,尽管它具有良好的窄脉冲干扰抑制能力,

但它使附加基元失真和使图象基元结构信息丢失。

在数字图象处理领域中,数学形态学主要用于非线性变换,是研究图象分析和机器视觉问题的有力工具[11]。数学形态学是主要是基于集合理论来研究图象,它提供了非常有效的非线性滤波技术,该技术只取决于基元的局部形状特征。因此,它在诸如形状分析、模式识别、视觉校验、计算机视觉等方面,要比传统的线性滤波更为有效。它可以局部地修改基元的几何特征,并提供有关基元的几何特征信息。根据不同的基元的形态特征,可以采用不同的数学形态学运算对基元进行处理,这些数学形态与运算都被视为数学形态滤波器。数学形态滤波器在数字图象处理中早己得到广泛的应用,这种非线性的滤波器可以有效地消除噪声而保留原基元的一些必要形状特征。 4. 1 .2数学形态学滤波器设计原理

在前两章中,我们对形态滤波器设计的基本原理己经进行了详尽地阐述。数学形态学的运算以腐蚀和膨胀这两种基本运算为基础,引出了其它七种常用的数学形态学运算:腐蚀、膨胀、开运算、闭运算、击中击不中、细化和粗化,它们是全部形态学的基础。形态滤波器是由以集合论为基础的开、闭运算组成,它们具有不模糊图象边界的特性[13]。采用形态算子对基元和图象进行处理便构成了数学形杰学滤波器。数学形态学滤波器在图象处理和分析中有着广泛的应用,一般说来,开运算用来消除散点、“毛刺”和小桥,即对图象进行平滑,闭运算则填平小洞或将两个邻近的区域连接起来。同时,形态学又十分强调图象的几何结构和几何特征,所以形态滤波器在图象滤波、分析处理和压缩编码等领域展示了美好的应用前景。由于形态学的开和闭运算具有消除图象噪声和平滑图象的功能,因此使用形态学开、闭运算建立的形态滤波器逐渐发展起来。形态滤波器是用一个结构元素B对初始图象串联地使用开、闭操作。这样图象中比结构元素小的游离的噪声将被滤除。若初始图象为A,结构元素为B,则形态滤波器可以这样来构成:

OC(A,B)=C(O(A,B),B)或CO(A,B)=O(C(A,B),B) (4.1)

形态滤波器的详尽描述如下:

(((A?B)?B)?B)?B或(((A?B)?B)?B)?B (4.2)

如果结构元素包括原点(o,0),则腐蚀和膨胀满足以下性质: 性质1

A?B?A?A?B (4.3)

这一性质表明,在B包括原点的前提下,腐蚀后的结果只会使A的点数减少或者不变,而膨胀则使A的点数增加或者不变。利用前一点,可以通过设计适当的结构元素B,使得

腐蚀后得以消除A中的微小颗粒,即噪声点。利用后一点,又可以对腐蚀结果再用B进行膨胀,以恢复有用信息(细节部分)。 性质2对开运算和闭运算,恒有 O(A,B) ?A?C(A,B) (4.4)

即开运算使原图形缩小而闭运算使原图形增大。

根据上面的讨论以及开闭运算的性质不难证明形态开一闭(OC)和形态闭一开(CO)滤波器具有如下一些重要性质: (l)平移不变性 OC(A+x,B)=OC(A,B)+x (4.5)

CO(A+x,B)=CO(A,B)+x (4.6)

(2)递增性 如果A1是A2的子集,则 OC(Al,B)?OC(A2,B) (4 .7)

CO(Al,B)?CO(A2,B) (4.8)

(3)幂等性

OC(CO(A,B))=CO(OC(A,B)) (4 .9)

CO(OC(A,B))=OC(CO(A,B)) (4 .10)

(4)对偶性

(OC(A,B))C=CO(A,B) (4 .11) (CO(A,B))C=OC(A,B) (4 .12) 形态滤波器的输出不仅取决于变换的形式,而且取决于结构元素的尺寸和形状,一般只有与结构元素的尺寸和形状相匹配的基元才能被保留。目前,人们所采用的形态滤波器主要有形态开运算、闭运算以及它们的级联组合形式,可以分别滤除图象中的背景噪声、前景噪声或者同时抑制图象中的背景和前景噪声。对于传统形态滤波器来讲,它们由于只采用了一种结构元素,滤波器的输出图象中就只能有一种几何信息被保留,而其它几何信息与噪声则被滤除,所以不利于图象几何结构特征的保持。因此对于传统的形态滤波器,至今仍然存在一个尚未得到很好解决的难题,即在去除图象随机噪声的同时又引起图象边缘的模糊,在保

留和增强图象边缘的同时又增强了图象的噪声。因此,寻找能够兼容平滑噪声和保留图象边缘及其它有意义特征的图象滤波算法一直是这个领域的热门话题。 形态滤波器是将图象经过串联的开、闭运算而将小于或等于结构元素的噪声滤除,在图象上只留下比结构元素大的图象基元。选取结构元素的形状是形态滤波器中非常重要的因素之一。结构元素是数学形态学中形态运算的最基本最重要的概念,它在各种形态变换中起着不可缺少的作用。结构元素没有固定的形状大小,它是在设计形态变换算法的同时,根据目标图象和所需信息的形状特征设计出来。对不同的目标图象,需要设计不同的结构元素和处理算法。结构元素的选择非常灵活多变,结构元素形状大小选择的恰当与否,将直接影响目标图象的处理结果[12]。我们根据处理的图象特性可以选择圆形、方形或十字形的结构元素

来滤除噪声。由于圆形结构元素具有对称性,对图象做开运算,可以平滑图象的内部边界,打断狭窄的连带,消去小的游离象素簇及图象上的顶值或尖角,所以普遍被采用。结构元素尺寸大小的选择同样非常重要,由于许多的图象细节,小的图象基元的尺寸有时小于结构元素,在滤除噪声的同时也将图象的细节弄丢了。如果选择小的结构元素,则噪声清除不干净,图象得不到改善。但如果选择较大的结构元素,则图象的细节将会丧失。为了解决这个消除噪声、平滑图象与保留图象细节两个方面的矛盾,正确的选择结构元素的尺寸是形态滤波器设计中至关重要的问题。可以这样说,结构元素是数学形态学图象处理算法优于其他图象处

理方法的关键所在,但也正是数学形态学进行图象处理的难点所在。 4.1.3多结构元素形态滤波器的设计

结构元素是研究数学形态学的关键概念,它较好地反映了下述合理的观点:所看到的一幅景物既不是完全客观的也不是完全主观的,而是介于二者之间。结构元素正是起着主、客观之间界面的作用,并且它给予主观较大的灵活性,使得可以方便地按照我们的目的选用不同形状和尺寸的结构元素。

通常,在所有的图象基元均大于噪声点的情况下,我们可采用传统形态滤波器,用一个直径略大于最大噪声点的圆形结构元素对图象进行开运算,将会消去图象外部背景上的噪声,而用同一结构元素对图象进行闭运算,将消去图象内部(前景)中的噪声。在实际生活中我们所要处理的图象,极少会碰到结构简单、几何特征明显且易处理的图象,经常碰到图象噪声点的状况均比较复杂,某些图象基元比噪声点要小,采用传统的形态滤波器在滤除噪声的同时,会平滑掉图象中的一些细节。而且由于开、闭运算具有幂等性,所以使用同一结构元素重复进行开、闭运算是没有什么结果的。鉴于此,为了减少图象细节的丢失,为了提高数学形态学滤波的有效性,采用多个结构元素并行处理的数学形态学滤波在图象滤波和特征提取方面获得应用[4,15]。我们可试想采用多结构元素来构造一类多结构元素复合形态滤波器。设A为输入图象,定义一个结构元素对{B}={B1,B2,….Bn}。从理论角度讲,多结构元素复合形态滤波器的设计方法同传统形态滤波器的设计方法是相同的,而且具有传统形态滤波器所具有的重要性质:平移不变性、递增性、对偶性以及幂等性。 (1)多结构元素复合串行形态滤波器

通常我们采用的交变序列滤波器(ASF)是开闭(闭开)运算序列迭代执行。初始