ݷʱ : 2024/12/27 0:23:21һ µȫĶ
еͨʽ
ϰ1 {an}ǰnΪSn,a1?1an?1?(1)a2,a3,a4ֵ{an}ͨʽ.(2)a2?a4?L?a2n1Sn(n?1,2,3,L)3
n?2Sn(n?1,2,L).֤:n ϰ2 {an}ǰnͼΪSn,֪a1?1an?1?Sn}ǵȱ;n(2)Sn?1?4an(1){ϰ 3 ֪{an}ǰnΪSnSn?
1(an?1)(n?N*)3(1)a1,a2;(2)֤:{an}ǵȱ.
11 ֪{an}a1?,an?1?an?2,an.ϰ4 2n?n
2nan,an.ϰ 5 ֪{an},a1?,an?1?3n?1 511n?1 ֪{a},a?,a?a?(),an.n1n?1nϰ6
632
ϰ7 ֪{a}:a? nnan?1a1?1,{an}ͨʽ.3?an?1?1
222a12?a2?a3???anϰ8 ȱ
{an}ǰnS2
5n(10?1)ϰ9 ͣ55555555559
111??L?ϰ10 ͣ1?44?7(3n?2)?(3n?1)
1111???L??1?21?2?31?2?3?L?n ϰ11 ͣ
ϰ12 {an}ǵȲУ{bn}ǸΪĵȱУa1?b1?1
?an???a3?b5?21a5?b3?13{an}{bn}ͨʽ?bn?ǰnSn
ϰ1𰸣 ϰ2 ֤ (1) ע
a(n+1)=S(n+1)-S(n) ֪ڶʽӵã S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2 S(1)/1=a(1)/1=10 {S(n)/n}ǵȱ (2) (1)֪
{S(n)/n}1Ϊ2ΪȵĵȱС S(n)/n=1*2^(n-1)=2^(n-1) S(n)=n*2^(n-1) (*) a(n+1)S(n)*(n+2)/n a(n+1)=(n+2)*2^(n-1) (nN) a(n)=(n+1)*2^(n-2) (nNn>1) ֵn=1ʱʽҲ
a(n)=(n+1)*2^(n-2) (nN)
(*)ʽã S(n+1)=(n+1)*2^n =(n+1)*2^(n-2)*2^2 =(n+1)*2^(n-2)*4 Աʽ֪S(n+1)=4*a(n ϰ3 𰸣 1)
a1=S1=1/3(a1-1) a1=-1/2
a2=S2-S1=1/3(a2-1)+1/2 3a2=a2-1+3/2 2a2=1/2 a2=1/4 2) 3Sn=an-1 3S(n-1)=a(n-1)-1 3an=an-a(n-1) 2an=-a(n-1) an/a(n-1)=-1/2 {an}ΪȱУ ϰ4 ۼӷ𰸣 ϰ5 ۳˷𰸣
ϰ6 ϵ𰸣 ϰ7 𰸣
4n?1ϰ8 ʽ𰸣3
6785678?(9?99?999?L?99L9)S?5?55?555?L?55L5n9ϰ9 𰸣
5505?[10?102?103?L?10n?n]?(10n?1)?n9819
nnnϰ10 3n?1 ϰ11, 1/(1+2+3++n)=1/[n(n+1)/2]=2/[n(n+1)] ԭʽ=1+2/2*3+2/3*4++2/[n(n+1)] =1+2*[(1/2-1/3)+(1/3-1/4)++(1/n-1/(n+1)] =1+2*[1/2-1/(n+1)] =2-2/(n+1) ϰ12 λ
𰸣⣺?an?ĹΪd?bn?ĹΪqq?0
4??1?2d?q?21?2??1?4d?q?13
an?1?(n?1)d?2n?1bn?qn?1?2n?1q?2d?2ãԣan2n?1?n?1bn2
Sn?1?352n?32n?152n?32n?1??L??2S?2?3??L??n?2n21222n?22n?122n?32
2222n?1?2?2??1?1?1?L?1??2n?1Sn?2?2??2?L?n?2?n?1?2n?2?n?12222??2222ڣٵã