内容发布更新时间 : 2024/12/23 1:11:33星期一 下面是文章的全部内容请认真阅读。
按试验目的和用途的不同,可分为:基础培养基;选择培养基;鉴别培养基;富集培养基。
12. 什么叫选择培养基?那些培养基属于选择培养基?
答:用以抑制非目的微生物的生长并使所要分离的微生物生长繁殖的培养基。麦康盖培养基为含胆汁酸盐的培养基,用于大肠杆菌的培养的选择培养基;乳糖发酵培养基也是适用于大肠杆菌生长的选择培养基。
13. 什么叫鉴别培养基?那些培养基属于鉴别培养基?
答:几种细菌由于对培养基中某一成分的分解能力不同,其菌落通过指示剂显示出不同的颜色而被区分开,这种其鉴别和区别不同细菌作用的培养基,叫做鉴别培养基。远藤氏培养基能区别大肠埃希氏菌,枸橼酸盐杆菌,产气杆菌,副大肠杆菌。此外,还有醋酸铅培养基,伊红-美蓝培养基。
14. 如何从粪便污染的水样中将大肠杆菌群中的四种菌逐一鉴别出来?
答:使用鉴别培养基,大肠埃希氏菌,枸橼酸盐杆菌,产气杆菌,副大肠杆菌均能在远藤氏培养基上生长,但它们对乳糖的分解能力不同:前三者能分解乳糖,但分解能力有强有弱,大肠埃希氏菌分解能力最强,菌落呈紫红色带金属光泽;枸橼酸盐杆菌次之,菌落呈紫红或深红色;产气杆菌第三,菌落呈淡红色,副大肠杆菌不能分解乳糖,菌落无色透明。这样,这四种菌被鉴别出来了。
15. 如何判断某水样是否被粪便污染?
答:如果水样中检测出有大肠杆菌群,则认为该水样被粪便污染。
16. 营养物质是如何进入细胞的?
答:各种营养物质依靠细胞质膜的功能进入细胞。不同营养物质进入细胞的方式也不同,一共有:单纯扩散;促进扩散;主动转运以及基团转位四种方式。单纯扩散是物理过程,不包括细胞的主动代谢。杂乱运动的、水溶性的溶质分子通过细胞质膜中含水的小孔从高浓度区向低浓度区扩散,不与膜上的分子发生反应。这一过程不需要消耗能量。促进扩散是在细胞质膜外表面与营养物质发生可逆结合,携带营养物质通过细胞质膜进入细胞,然后与营养物质分离,它本身再返回细胞质膜外表面与另一营养物质可逆性结合,如此不断循环。主动运输是当微生物内所积累的营养物质的浓度高于细胞外的浓度时,营养物质就不能按浓度梯度扩散但细胞内,而是逆浓度梯度被“抽”进细胞内。这种逆浓度梯度积累营养物质的过程,叫主动运输。基团转位是由一种需要代谢能量的运输方式。通过基团转位进入细胞的物质有糖、嘌呤、嘧啶、乙酸等。
17. 营养物质顺浓度梯度进入细胞的方式有哪些?是如何进入?
答:有单纯扩散和促进扩散。单纯扩散是物理过程,不包括细胞的主动代谢。杂乱运动的、水溶性的溶质分子通过细胞质膜中含水的小孔从高浓度区向低浓度区扩散,不与膜上的分子发生反应。这
10
一过程不需要消耗能量。促进扩散是在细胞质膜外表面与营养物质发生可逆结合,携带营养物质通过细胞质膜进入细胞,然后与营养物质分离,它本身再返回细胞质膜外表面与另一营养物质可逆性结合,如此不断循环。
18. 营养物质逆浓度梯度进入细胞的方式有哪些?是如何进入?
答:有主动运输和基团转运。主动运输是当微生物内所积累的营养物质的浓度高于细胞外的浓度时,营养物质就不能按浓度梯度扩散但细胞内,而是逆浓度梯度被“抽”进细胞内。这种逆浓度梯度积累营养物质的过程,叫主动运输。基团转位是由一种需要代谢能量的运输方式。通过基团转位进入细胞的物质有糖、嘌呤、嘧啶、乙酸等。
19. 什么叫主动运输?什么叫基团转位?
答:主动运输是当微生物内所积累的营养物质的浓度高于细胞外的浓度时,营养物质就不能按浓度梯度扩散但细胞内,而是逆浓度梯度被“抽”进细胞内。这种逆浓度梯度积累营养物质的过程,叫主动运输。基团转位是由一种需要代谢能量的运输方式。通过基团转位进入细胞的物质有糖、嘌呤、嘧啶、乙酸等。
20. 什么叫新陈代谢?
答:微生物从外界环境中不断的摄取营养物质,经过一系列的生物化学反应,转变成细胞的组分,同时产生出废物并排泄到体外,这个过程叫新陈代谢。
21. 微生物呼吸作用的本质是什么?可分为哪几种类型?各类型有什么特点?
答:微生物呼吸作用的本质是氧化与还原的统一过程,这过程中有能量的产生和转移。微生物呼吸作用的可分为发酵、好氧呼吸和无氧呼吸。发酵:在无电子受体时,微生物氧化一些有机物。有机物仅发生部分氧化,以它的中间产物为最终电子受体,是放少量能量,其余的能量保留在最终产物中。好氧呼吸:当存在外在的最终电子受体—分子氧时,底物可全部被氧化成二氧化碳和水,并产生ATP。无氧呼吸:在电子传递体系中,氧化NADH2时的最终电子受体不是氧气,而是氧气以外的无机化合物。无氧呼吸的氧化底物一般为有机物,如葡萄糖、乙酸和乳酸。它们被氧化成二氧化碳,有ATP生成。
22. 葡萄糖在好氧条件下是如何氧化彻底的?
葡萄糖在好氧呼吸过程中,氧化分解分两个阶段:1. 葡萄糖经EMP途径酵解。这一过程不耗氧,形成中间产物——丙酮酸。2. 丙酮酸的有氧分解。氧化过程的一系列步骤总称为三羧酸循环(即TCA)循环。
23. 什么叫底物水平磷酸化、氧化磷酸化和光合磷酸化?
基质(底物)水平磷酸化:厌氧微生物和兼性厌氧微生物在基质氧化过程中,产生一种含高自由能的中间体,如发酵中产生含高键能的1,3-二磷酸甘油酸。这一中间体将高键能交给ADP,使ADP磷酸化而生成
11
ATP。
氧化磷酸化:好氧微生物在呼吸时,通过电子传递体系产生ATP的过程。
光合磷酸化:光引起叶绿素、菌绿素或菌紫素逐出电子,通过电子传递产生ATP的过程。
24. 何谓光合作用?比较产氧光合作用和不产氧光合作用的异同。
利用CO2和H2O合成有机物,构成自身细胞物质,叶绿素是将光能转化为化学能的基本物质。
微生物 藻类光合作用 蓝细菌、真核藻类 硫细菌 叶绿素a(吸收红光)、b、c、细菌叶绿素(有些吸收远红叶绿素类型 d、e 光系统1(环式光合磷酸化) 有 光) 有 无 无 H2S、H2、有机化合物(有机光合细菌) 细菌光合作用 紫硫细菌、绿硫细菌、紫色非光系统2(非环式光合磷酸化) 有 产生氧 供氢体
有 H2O 第五章 微生物的生长繁殖与生存因子
1.微生物与温度的关系如何?高温是如何杀菌的?高温杀菌力与什么有关系?
答:温度是微生物的重要生存因子。在适宜的温度范围内,温度毎升高10摄氏度,酶促反应速度将提高1~2倍,微生物的代谢速率和生长速率均可相应提高。适宜的培养温度使微生物以最快的生长速率生长,过高或过低的温度均会降低代谢速率和生长速率。
高温主要破坏微生物的机体的基本组成物质——蛋白质,酶蛋白和脂肪。。蛋白质被高温严重破坏而发生凝固,为不可逆变性,微生物经超高温处理后必然死亡。细胞质膜含有受热易溶解的脂类,当用超高温处理时,细胞质膜的脂肪受热溶解使膜产生小孔,引起细胞内含物泄漏而死亡。 高温的杀菌效果和微生物的种类,数量,生理状态,芽孢有无及pH都有关系。
2.什么叫灭菌?灭菌方法有哪几种?试述其优缺点。
答:灭菌是通过超高温或其他的物理、化学因素将所有的微生物的营养细胞和所有的芽孢或孢子全部杀死。
灭菌的方法有干热灭菌法和湿热灭菌法。
湿热灭菌法比干热灭菌法优越,因为湿热的穿透力和热传导都比干热的强,湿热时微生物吸收高温水分,菌体蛋白易凝固变性,所以灭菌效果好。
12
3.什么叫消毒?加热消毒的方法有哪几种?
答:消毒是用物理、化学因素杀死致病菌,或是杀死所有微生物的营养细胞或一部分芽孢。
方法有巴斯德消毒法和煮沸消毒法两种。
4.嗜冷微生物为什么能在低温环境生长繁殖?
答:嗜冷微生物具备更有效的催化反应的酶,其主动传送物质的功能运转良好,使之能有效地集中必需的营养物质,嗜冷微生物的细胞质膜含有大量的不饱和脂肪酸,在低温下保持半流动性。
5.高温菌和中温菌在低温环境中的代谢能力为什么减弱?
答:在低温条件下,微生物的代谢极微弱,基本处于休眠状态,但不致死。嗜中温微生物在低于十摄氏度的温度下不生长,因为蛋白质合成的启动受阻,不能合成蛋白质。又由于许多酶对反馈抑制异常敏感,很易和反馈抑制剂紧密结合,从而影响微生物的生长。处于低温下的微生物一旦获得适宜温度,即可恢复活性,以原来的生长速率生长繁殖。
6.细菌、放线菌、酵母菌、霉菌、藻类和原生动物等的正常生长繁殖分别要求什么样的pH?
答:大多数细菌、藻类和原生动物的最适宜pH为6.5~7.5,它们的pH适应范围在4~10之间。放线菌为7.5~8.0。酵母菌和霉菌在3~6。
7.试述pH过高或过低对微生物的不良影响。用活性污泥法处理污(废)水时为什么要保持在pH6以上? 答:(1) pH过低,会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。(2) 过高或者过低的pH还可影响培养基中的有机化合物的离子作用,从而间接影响微生物。因为细菌表面带负电,非离子状态化合物比离子状态化合物更容易渗入细胞。(3) 酶只在最适宜的pH时才能发挥其最大活性,极端的pH使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。(4) 过高或者过低的pH均降低微生物对高温的抵抗能力。
8. 在培养微生物过程中,什么原因使培养基pH下降?什么原因使pH上升?在生产中如何调节控制pH? 答:微生物在培养基中分解葡萄糖,乳产生有机酸会引起培养基的pH下降,培养基变酸。微生物在含有蛋白质、蛋白胨及氨基酸等中性物质培养基中生长,这些物质可经微生物分解,产生NH3和胺类等碱性物质,使培养基pH上升。
在生产过程中,处理城市生活污水、污泥中含有蛋白质,可不加缓冲性物质。如果不含蛋白质、氨等物质,处理前就要投加缓冲物质。缓冲物质有碳酸氢钠、碳酸钠、氢氧化钠、氢氧化铵及氨等。以碳酸氢钠最佳。
霉菌和酵母菌对有机物具有较强的分解能力。pH较低的工业废水可用霉菌和酵母菌处理,不需要碱调节pH,可节省费用。
9. 微生物对氧化还原电位要求如何?在培养微生物过程中氧化还原电位如何变化?有什么办法控制? 答:各种微生物要求的氧化还原电位不同。一般好氧微生物要求的Eh为+300~+400mV;Eh在+100mV以
13
上,好氧微生物生长。兼性厌氧微生物在Eh为+100mV以上进行好氧呼吸,在Eh为+100mV一下时进行无氧呼吸。专性厌氧菌要求Eh为-200~-250mV,专性厌氧的产甲烷菌要求的Eh更低,为-300~-400mV,最适为-330mV。
在培养微生物的过程中,由于微生物繁殖消耗了大量氧气,分解有机物产生氢气,使得氢气还原电位降低,在微生物对数生长期降到最低点。
氧化还原电位可用一些还原剂加以控制,使微生物体系中的氧化还原电位维持在低水平上。这类还原剂有抗坏血酸、硫二乙醇钠、二硫苏糖醇、谷胱甘肽、硫化氢及金属铁。
10. 好氧微生物需要氧气作何用?充氧效率与微生物生长有什么关系?
答:氧对好氧微生物有两个作用:(1) 作为微生物好养呼吸的最终电子受体;(2)参与甾醇类和不饱和脂肪酸的生物合成。
充氧量与与好氧微生物的生长量、有机物浓度等成正相关性。
11. 兼性厌氧微生物为什么在有氧和无氧条件下都能生长?
答:兼性厌氧微生物既有脱氢酶也有氧化酶,所以,既能在无氧条件下,又能在有氧条件下生存。在好痒条件下生长时,氧化酶活性强,细胞色素及电子传递体系的其他组分正常存在。在无氧条件下,细胞细胞色素及电子传递体系的其他组分减少或全部丧失,氧化酶无活性;一旦通入氧气,这些组分的合成很快恢复。
12. 专性厌氧微生物为什么不需要氧?氧对专性厌氧微生物有什么不良影响? 答:因为专性厌氧微生物一遇到氧就会死亡。
在氧气存在时,专性厌氧微生物代谢产生的NADH2和O2反应生成H2O2和NAD,而专性厌氧微生物没有过氧化氢酶,它将被生成的过氧化氢杀死。O2还可以产生游离O2,由于专性厌氧微生物没有破坏O2的超氧化物歧化酶而被O2杀死。耐氧的厌氧微生物虽具有超氧化物歧化酶,能耐O2然而他们缺乏氧化氢酶,仍会被氧化氢杀死。
13. 紫外线杀菌的机理是什么?何谓光复活和暗复活现象?
答:紫外辐射的波长范围是200~390nm,紫外辐射对微生物有致死作用是由于微生物细胞中的核酸、嘌呤、嘧啶、及蛋白质对紫外辐射有特别强的吸收能力。DNA和RNA对紫外辐射的吸收峰在260nm处,蛋白质对紫外辐射的吸收峰在280nm处.紫外辐射能引起DNA链上两个邻近的胸腺嘧啶分子形成胸腺嘧啶二聚体,致使DNA不能复制,导致微生物死亡。
经紫外辐射照射的菌体或孢子悬液,随即暴露于蓝色可见光下,有一部分受损伤的细胞可恢复其活力,这种现象叫光复活。在黑暗条件下修复DNA链称为暗复活。
14. 几种重金属盐如何起杀菌作用的?
14
???