内容发布更新时间 : 2024/12/24 0:49:24星期一 下面是文章的全部内容请认真阅读。
3.3.2 均匀随机数的产生
整体设计
教学分析
本节在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用.
通过对本节例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识. 三维目标
1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯.
2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力. 重点难点
教学重点:掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率.
教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 课时安排 1课时
教学过程
导入新课
思路1
在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.
思路2
复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?这节课我们接着学习下面的内容,均匀随机数的产生. 推进新课 新知探究 提出问题
(1)请说出古典概型的概念、特点和概率的计算公式? (2)请说出几何概型的概念、特点和概率的计算公式?
(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?
(4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数. (5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数. (6)[a,b]上均匀随机数的产生.
活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导. 讨论结果:
(1)在一个试验中如果
a.试验中所有可能出现的基本事件只有有限个;(有限性) b.每个基本事件出现的可能性相等.(等可能性) 我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.
古典概型计算任何事件的概率计算公式为:P(A)=
A所包含的基本事件的个数.
基本事件的总数(2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型. 几何概型的基本特点:
a.试验中所有可能出现的结果(基本事件)有无限多个; b.每个基本事件出现的可能性相等. 几何概型的概率公式:P(A)=
构成事件A的区域长度(面积或体积).
试验的全部结果所构成的区域长度(面积或体积)(3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可. (4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:
试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.
(5)a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.
b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数. (6)[a,b]上均匀随机数的产生:
利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,
然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.
这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.
应用示例
思路1
例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?
活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利
用计算机产生B是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算. 解法一:1.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.
2.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.
3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.
4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按Ctrl+V.
5.选定E1格,键入频数函数“=FREQUENCY(D1:D50,-0.5)”,按Enter键,此数是统计D列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.
6.选定F1格,键入“=1-E1/50”,按Enter键,此数是表示统计50次试验中,父亲在离开家前能得到报纸的频率.