leslie人口增长模型

内容发布更新时间 : 2025/7/9 23:42:40星期一 下面是文章的全部内容请认真阅读。

1101051009590百万人858075706560200020052010201520202025年份20302035204020452050

图7 未来我国生育旺盛期育龄妇女(20-29)人数预测

从图7我们发现,我国生育旺盛期育龄妇女(20-29)人数在2012年将达到高峰,到2025年左右有进入一个小低谷,然后再2037年左右有达到一个小高峰。第二个我国生育旺盛期育龄妇女(20-29)人数小高峰的原因在于在2012年人口出生高峰期的女婴到2037年时达到生育旺盛期,因此,在2025年生育旺盛期育龄妇女(20-29)人数达到低谷时有回升的形势。

§6、误差分析与灵敏度分析

一、模型的残差分析:

1、运用Matlab软件计算出用1954年到2005年的总人口数进行拟合产生的残差,再利用EXCEL作出残差的散点图如下:

残差分析210-1-2-3-4-5残差值195419571960196319661969197219751978198119841987199019931996199920022005年份系列1

图8 残差分析

从图8可以看出残差在坐标轴x?0上下波动,但是,不是呈现正态分布,并且残差绝对值之和为57.9992,是比较大,因此拟合的效果不太好。

2、利用1963年到2005年的总人口数,根据Logistic模型的形式,用Matlab软件进行拟合,并求出残差序列,再利用EXCEL进行处理,并作出残差散点图如下:

13

残差分析32残差值10196319661969197219751978198119841987199019931996199920022005-1-2年份系列2

图9 残差分析图

通过图9,可以看出残差值大致分布在坐标轴x的上下,呈现对称分布,又有Matlab软件计算出拟合的残差绝对值之和为27.8046,因此效果较好。

3、利用1980年到2005年的人口总数居,同样运用Matlab、EXCEL软件进行分析、处理,作出散点图如下:

残差分析0.60.40.20-0.2-0.4-0.6-0.8-1-1.2差值1980198219841986198819901992199419961998200020022004系列3年份

图10 残差分析图

通过Matlab软件计算,得出拟合的残差绝对值之和为10.1699,从图10可以看出,图形基本关于坐标轴x?0对称,所以你和效果比较好。 二、灵敏度分析:

1、在不同的总合生育率k下按照前面的方法分别计算从2001年到2050年全国人口总数的预测值(程序见附录6),并画出图形如图11

14

165160155150k=1.6k=1.8k=2.0k=2.2千万人145140135130125120200020052010201520202025年份20302035204020452050图11:在不同的k值下对各年份全国总人口数的预测

由图11可以看出当k值很小时人口增长比较缓慢,达到峰值后人口数量很快下降出现严重负增长;当k值很大时人口增长速度很快,达到峰值后下降的速度缓慢,在此情况下人口数量急剧膨胀。只有当k值适中时,总人口增长才比较稳定。

2、再在不同的总和生育率k下按照前面的方法分别计算从2001年到2050年全国老龄化变化趋势(程序见附录6),并画出图形如图12

0.65k=1.6k=1.8k=2.0k=2.20.6老龄化指数0.550.50.4520002005201020152020

2025年份20302035204020452050

图12:在不同的k值下对各年份老龄化变化趋势

由图12可以看出k值越小,老龄化增大的速度越快;k

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi