内容发布更新时间 : 2024/11/20 13:18:28星期一 下面是文章的全部内容请认真阅读。
交大附中自主招生试卷
第一部分1. 已知2.
2019.03
11?x??3,求x3?3?1000.xxx?1xx?t??有增根,求所有可能的t之和.xx?1x(x?1)
3. AB∥CD,AB?15,CD?10,AD?3,CB?4,求SABCD.
4. y?x3?4x?6,若a?x?b时,其中x的最小值为a,最大值为b,求a?b.
5. y?2(x?2)2?m,若抛物线与x轴交点与顶点组成正三角形,求m的值.
6. DE为BC的切线,正方形ABCD边长为200,BC以BC为直径的半圆,求DE的长.
7. 在直角坐标系中,正?ABC,B(2,0),C(,0)过点O作直线DMN,OM?MN,
2
求M的横坐标.
98. 四圆相切⊙B与⊙C半径相同,⊙A过⊙D圆心,⊙A的半径为9,求⊙B的半径.
9. 横纵坐标均为整数的点为整点,(?m?a),y?mx?a(1?x?100),不经过整
2
点,求a可取到的最大值.
110. G为重心,DE过重心,S?ABC?1,求S?ADE的最值,并证明结论.
第二部分(科学素养)
1. 已知直角三角形三边长为整数,有一条边长为85,求另两边长(写出10组).
2. 阅读材料,根据凸函数的定义和性质解三道小题,其中第(3)小题为不等式证明
(1)b?
3. 请用最优美的语言赞美仰晖班(80字左右)(17分)4. 附加题(25分)
11;(2)b?(.注:选(1)做对得10分,选(2)做对得20分)
34
?2w?x?y?z?1?w?2x?y?z?2?(2 points) solve the following system of equations for w.??w?x?2y?z?2??w?x?y?2z?1
9821?(4 points)Compute ?
nn?2n?1?n?2?(6 points)Solve the equation
x?4x?16x?????42018x?3?x?1.Express your
第 1 页
answer as a reduced fraction with the numerator written in their prime factorization.
The gauss function [x]denotes the greatest less than or equal to x
A)(3 points)Compute ??2017!?2016!???2018!?2015!?
B)(4points)Let real numbers x1,x2,???,xn be the solutions of the equation x2?3[x]?4?0,
22?????xnfind the value of x12?x2
C)(6 points)Find all ordered triples (a,b,c) of positive real that satisfy:[a]bc?3,a[b]c?4,and ab[c]?5第 2 页