期权期货和其它衍生产品第三版约翰赫尔答案1-12

内容发布更新时间 : 2025/7/6 9:23:43星期一 下面是文章的全部内容请认真阅读。

(b)图8.3

(c)图8.4

(d)图8.5

第九章

9.1 股票现价为$40。已知在一个月后股价为$42或$38。无风险年利率为8%(连续复利)。执行价格为$39的1个月期欧式看涨期权的价值为多少?

31

解:考虑一资产组合:卖空1份看涨期权;买入Δ份股票。

若股价为$42,组合价值则为42Δ-3;若股价为$38,组合价值则为38Δ 当42Δ-3=38Δ,即Δ=0.75时,

组合价值在任何情况下均为$28.5,其现值为:28.5e?0.08*0.08333?28.31, 即:-f+40Δ=28.31 其中f为看涨期权价格。 所以,f=40×0.75-28.31=$1.69

另解:(计算风险中性概率p) 42p-38(1-p)=

40e0.08*0.08333,p=0.5669

期权价值是其期望收益以无风险利率贴现的现值,即:

f=(3×0.5669+0×0.4331)e?0.08*0.08333=$1.69

9.2 用单步二叉树图说明无套利和风险中性估值方法如何为欧式期权估值。

解:在无套利方法中,我们通过期权及股票建立无风险资产组合,使组合收益率等价于无风险利率,从而对期权估值。

在风险中性估值方法中,我们选取二叉树概率,以使股票的期望收益率等价于无风险利率,而后通过计算期权的期望收益并以无风险利率贴现得到期权价值。

9.3什么是股票期权的Delta?

解:股票期权的Delta是度量期权价格对股价的小幅度变化的敏感度。即是股票期权价格变化与其标的股票价格变化的比率。

9.4某个股票现价为$50。已知6个月后将为$45或$55。无风险年利率为10%(连续复利)。执行价格为$50,6个月后到期的欧式看跌期权的价值为多少?

解:考虑如下资产组合,卖1份看跌期权,买Δ份股票。 若股价上升为$55,则组合价值为55Δ;

若股价下降为$45,则组合价值为:45Δ-5

当55Δ=45Δ-5,即Δ=-0.50时,6个月后组合价值在两种情况下将相等,均为$-27.5,其现值为:

?27.5e?0.10*0.50??$26.16,即:

-P+50Δ=-26.16

所以,P=-50×0.5+26.16=$1.16 另解:求风险中性概率p

55p?45(1?p)?50e 所以,p=0.7564

看跌期权的价值P=(0*0.7564?5*0.2436)e?0.10*0.500.10*0.50

?$1.16

9.5 某个股票现价为$100。有连续2个时间步,每个时间步的步长为6个月,每个单步二叉树预期上涨10%,或下降10%。无风险年利率为8%(连续复利)。执行价格为$100的一年期欧式看涨期权的价值为多少? 解:由题意得,u=1.10,d=0.90,r=0.08

32

所以,p?

erT?du?d?e0.08*0.50?0.901.10?0.90?0.7041

计算二叉树图的结果如下 110 14.2063 100 9.6104 90 0

图9.1 则看涨期权价值为:

121 21 99 0 81 19 e

?2*0.08*0.50*(0

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi