内容发布更新时间 : 2025/5/3 5:34:52星期一 下面是文章的全部内容请认真阅读。
z1 2.06 0.241 8.54 *** par_27 z3 4.405 0.668 6.596 *** par_28 z4 0.894 0.107 8.352 *** par_29 z5 1.373 0.214 6.404 *** par_30 e1 0.584 0.079 7.363 *** par_31 e2 0.861 0.093 9.288 *** par_32 e3 2.675 0.199 13.467 *** par_33 e5 1.526 0.13 11.733 *** par_34 e4 2.459 0.186 13.232 *** par_35 e6 1.245 0.105 11.799 *** par_36 e7 0.887 0.103 8.583 *** par_37 e8 1.335 0.119 11.228 *** par_38 e10 1.759 0.152 11.565 *** par_39 e9 0.976 0.122 7.976 *** par_40 e11 3.138 0.235 13.343 *** par_41 e12 1.926 0.171 11.272 *** par_42 e13 2.128 0.176 12.11 *** par_43 e18 1.056 0.089 11.832 *** par_44 e16 0.42 0.052 8.007 *** par_45 e17 0.554 0.061 9.103 *** par_46 e15 0.364 0.591 0.616 0.538 par_47 e24 3.413 0.295 11.55 *** par_48 e22 3.381 0.281 12.051 *** par_49 e23 1.73 0.252 6.874 *** par_50 e14 0.981 0.562 1.745 0.081 par_51 注:“***”表示0.01 水平上显著,括号中是相应的C.R值,即t值。
五、 模型拟合评价
在结构方程模型中,试图通过统计运算方法(如最大似然法等)求出那些使样本方差协方差矩阵S与理论方差协方差矩阵?的差异最小的模型参数。换一个角度,如果理论模型结构对于收集到的数据是合理的,那么样本方差协方差矩阵S与理论方差协方差矩阵?差别不大,即残差矩阵(??S)各个元素接近于0,就可以认为模型拟合了数据。
模型拟合指数是考察理论结构模型对数据拟合程度的统计指标。不同类别的模型拟合指数可以从模型复杂性、样本大小、相对性与绝对性等方面对理论模型进行度量。Amos提供了多种模型拟合指数(如表
表7-7 拟合指数 指数名称 评价标准13 绝对拟合指数 ?2(卡方) GFI 13
越小越好 大于0.9 表格中给出的是该拟合指数的最优标准,譬如对于RMSEA,其值小于0.05表示模型拟合较好,在0.05-0.08间表示模型拟合尚可(Browne & Cudeck,1993)。因此在实际研究中,可根据具体情况分析。
17
RMR 小于0.05,越小越好 SRMR 小于0.05,越小越好 RMSEA 小于0.05,越小越好 NFI 大于0.9,越接近1越好 相对拟合指数 TLI 大于0.9,越接近1越好 CFI 大于0.9,越接近1越好 AIC 越小越好 信息指数 CAIC 越小越好 7-7)供使用者选择14。如果模型拟合不好,需要根据相关领域知识和模型修正指标进行模型修正。
需要注意的是,拟合指数的作用是考察理论模型与数据的适配程度,并不能作为判断模型是否成立的唯一依据。拟合优度高的模型只能作为参考,还需要根据所研究问题的背景知识进行模型合理性讨论。即便拟合指数没有达到最优,但一个能够使用相关理论解释的模型更具有研究意义。