2014 最新 概率论 练习

内容发布更新时间 : 2025/1/22 19:12:51星期一 下面是文章的全部内容请认真阅读。

院(系) 班 姓名 学号 第一章 概率论的基本概念

样本空间、随机事件

一、写出以下随机试验的样本空间:

1.从两名男乒乓球选手A,B和三名女乒乓球选手C,D,E中选拔一对选手参加男女混合双打,观察选择结果。

2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。

二、有三位学生参加高考,以Ai表示第i人考取(i?1,2,3).试用Ai表示以下事实: 1.至少有一个考取;2.至多64738291有两人考取;3.恰好有两人落榜。 三、投掷一枚硬币5次,问下列事件A的逆事件A是怎样的事件?

1. A表示至少出现3次正面;2. A表示至多出现3次正面;3. A表示至少出现3次反面。 四、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A表示“取得的球的号码是偶数”, 事件B表示“取得的球的号码是奇数”, 事件C表示“取得的球的号码小于5”,则C,A?C,AC,A?C,A?B,AB分别表示什么事件?

五、在某系的学生中任选一名学生,令事件A表示“被选出者是男生”;事件B表示“被选出者是三年级学生”;事件C表示“被选出者是运动员”。 (1)说出事件ABC的含义;

(2)什么时候有恒等式A?B?C?C; (3) 什么时候有关系式C?B正确; (4)什么时候有等式A?B成立。

院(系) 班 姓名 学号 概率、古典概型 一、填空

1.已知事件A,B的概率P(A)?0.7,P(B)?0.6,积事件AB的概率P(AB)?0.4,则

P(A?B)? , P(A?B)? , P(A?B)? ,

P(A?B)? ,P(AB)? , P(A?AB)? . 2. 设A,B为两个事件,P(B)?0.7,P(AB)?0.3,则P(A?B)? . 3. 设A,B为两个任意不相容事件,,则P(A?B)? .

4. 设A,B为两个事件,P(A)?0.5,P(A?B)?0.2,则P(AB)? . 5. 已知P(A)?P(B)?P(C)?生的概率为 .

二、设A,B是两事件,且P(A)?0.6,P(B)?0.7,求

(1) 在什么条件下,P(AB)取到最大值? (2) 在什么条件下,P(AB)取到最小值? 三、一批产品20件,其中3件次品,任取10件,求

(1) 其中恰有一件次品的概率;(2) 至少有一件次品的概率。

四、甲、乙两艘油轮驶向一个不能同时停泊两艘油轮的码头,它们都将在某日8时至20时抵达码头。甲轮卸完油要一小时,乙轮要两小时。假设每艘油轮在8时到20时的每一时刻抵达码头的可能性相同。

1.求甲乙两轮都不需等候空出码头的概率;

2.设A表示甲、乙同一时刻抵达码头,问A是否是不可能事件,并求P(A)。 五、某年级有10名大学生是1986年出生的,试求这10名大学生中

1.至少有两人是同一天生日的概率;2.至少有一人在十月一日过生日的概率。 六、设P(A)?P(B)?11,P(AB)?0,P(AC)?P(BC)?,则A,B,C全不发461,求证:P(AB)?P(AB) 2七、设A,B为两个事件,P(A)?0.7,P(A?B)?0.3,求P(AB)。

院(系) 班 姓名 学号

练习1.3 条件概率、全概率公式

一、填空

1.设A,B为两个事件,P(A)?a,P(B)?b,P(B|A)?c,且a,b,c都是已知的小于1的正数,则P(AB)? ,P(A?B)? , P(A?B)? ,

P(AB|)? ,P(B|A)? , P(B|A)? . 2.设A,B为两个事件,P(A)?0.9,P(AB)?0.36,则P(AB)? . 3. 设A,B,C为一完备事件组,且P(A)?0.5,P(B)?0.7,则P(C)? ,P(AB)? . 4. 已知A1,A2,A3为一完备事件组,P(A1)?0.1,P(A2)?0.5,P(B|A1)?0.2,

P(B|A2)?0.6,P(B|A3)?0.1,则P(A1|B)? . 5. 设A,B为随机事件,且P(A)?0.92,P(B)?0.93,P(B则P(AB |A)?0.85,|)? ,P(AB)? . 二、一台电子仪器出厂时,使用寿命1000小时以上的概率为0.6,1500小时以上的概率为0.4,现已使用了1000小时,求还能使用500小时以上的概率。

三、有十箱产品,已知其中三、二、五箱分别是第一、第二、第三车间生产的,各车间的次品率分别是0.2,0.1,0.05,现在任取一箱,再从中任取一件:

1.求此件为次品的概率;2.如果此件为次品,问是哪个车间生产的可能性最大? 四、人群中患肝癌的概率为0.0004.用血清甲胎蛋白法检查时,患有此病被确诊的概率为0.95,未患被误诊的概率为0.01.问普查时,任一人被此法诊断为肝癌患者的概率有多大 ??设此人被此法诊断为肝癌患者,问此人真患有肝癌的概率有多大?比未作检查时的概率增大了多少倍?

五、有两箱同型号的零件,A箱内装50件,其中一等品10件;B箱内装30件,其中一等品18件.装配工从两箱中任选一箱,从箱子中先后随机地取两个零件(不放回抽样)。求: (1)先取出的一件是一等品的概率;

(2)在先取出的一件是一等品的条件下,第二次取出的零件仍是一等品的概率。 六、为了防止意外,在矿内同时装有两种报警系统(I)和(II),每种系统单独使用时,系统(I)和系统(II)有效的概率分别为0.92和0.93.在系统(I)失灵的情况下,系统(II)仍有效的概率为0.85,求两个警报系统至少有一个有效的概率。

七、设一人群中有37.5%的人血型为A型,20.9%为B型, 33.7%为O型,7.9%为AB型,已知能允许输血的血型配对如下表,现在在人群中任选一人为输血者,再选 一人为需要输血者,问输血能成功的概率是多少?(V:允许输血;X:不允许输血)。 输血者 受血者 A型 A型 √ B型 × AB型 √ O型 √ B型 AB型 O型 × √ × √ √ × √ √ × √ √ √

院(系) 班

姓名 学号

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi