ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2026/2/2 9:56:23ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
Matlab»ù´¡Á·Ï°Ìâ
³£Á¿¡¢±äÁ¿¡¢±í´ïʽ
1¡¢ MATLABÖУ¬ÏÂÃæÄÄЩ±äÁ¿ÃûÊǺϷ¨µÄ£¿£¨ £©
£¨A£©_num £¨B£©num_ £¨C£©num- £¨D£©-num 2¡¢ ÔÚMATLABÖУ¬Òª¸ø³öÒ»¸ö¸´ÊýzµÄÄ££¬Ó¦¸ÃʹÓ㨠£©º¯Êý¡£
£¨A£©mod(z) £¨B£©abs(z) £¨C£©double(z) £¨D£©angle(z) 3¡¢ ÏÂÃæÊôÓÚMATLABµÄÔ¤¶¨ÒåÌØÊâ±äÁ¿µÄÊÇ£¿£¨ £©
£¨A£©eps £¨B£©none £¨C£©zero £¨D£©exp
4¡¢ ÅжϣºÔÚMATLABµÄÄڴ湤×÷ÇøÖУ¬´æ·ÅÒ»¸öÓ¢ÎÄ×Ö·û 'a' ÐèÒªÕ¼ÓÃ1¸ö×Ö½Ú£¬´æ·Å
Ò»¸öÖÐÎÄ×Ö·û¡®°¡¡¯ÐèÒªÕ¼ÓÃ2¸ö×Ö½Ú¡££¨ ´í£¬¶¼ÊÇ2¸ö×Ö½Ú £© 5¡¢ ÅжϣºMATLABÖУ¬iºÍj¶¼ÊÇÐéÊýµ¥Î»?1£¬ËüÃÇÖ®¼äûÓÐÊ²Ã´Çø±ð¡££¨ ¶Ô £© 6¡¢ ÅжϣºMATLABÖУ¬pi´ú±íÔ²ÖÜÂÊ£¬ËüµÈÓÚ3.14¡££¨ ´í£¬ºóÃæ»¹ÓкܶàλСÊý £© 7¡¢ ÔÚMATLABÖУ¬ÈôÏë¼ÆËãµÄy1?2sin(0.3?)1?5Öµ£¬ÄÇôӦ¸ÃÔÚMATLABµÄÖ¸Áî´°ÖÐ
ÊäÈëµÄMATLABÖ¸ÁîÊÇ__y1=2*sin(0.3*pi)/(1+sqrt(5))_¡£
8¡¢ ÔÚMATLABÖУ¬a = 1£¬b = i£¬ÔòaÕ¼_8__¸ö×Ö½Ú£¬bÕ¼_16_¸ö×Ö½Ú£¬cÕ¼________×Ö
½Ú¡£
9¡¢ ÔÚMATLABÖУ¬infµÄº¬ÒåÊÇ__ÎÞÇî´ó__£¬nanµÄº¬ÒåÊÇ__·ÇÊý£¨½á¹û²»¶¨£©___¡£
Êý×é
1¡¢ ÔÚMATLABÖУ¬XÊÇÒ»¸öһάÊýÖµÊý×飬ÏÖÔÚÒª°ÑÊý×éXÖеÄËùÓÐÔªËØ°´ÔÀ´´ÎÐò
µÄÄæÐòÅÅÁÐÊä³ö£¬Ó¦¸ÃʹÓÃÏÂÃæµÄ£¨ £©Ö¸Áî¡£
£¨A£©X[end:1] £¨B£©X[end:-1:1] £¨C£©X (end:-1:1) £¨D£©X(end:1) 2¡¢ ÔÚMATLABÖУ¬AÊÇÒ»¸ö×Ö¶þάÊý×飬Ҫ»ñÈ¡AµÄÐÐÊýºÍÁÐÊý£¬Ó¦¸ÃʹÓõÄMATLAB
µÄÃüÁîÊÇ£¨ £©¡£
£¨A£©class(A) £¨B£©sizeof(A) £¨C£©size(A) £¨D£©isa(A)
3¡¢ ÔÚMATLABÖУ¬ÓÃÖ¸Áîx=1:9Éú³ÉÊý×éx¡£ÏÖÔÚÒª°ÑxÊý×éµÄµÚ¶þºÍµÚÆß¸öÔªËØ¶¼
¸³ÖµÎª0£¬Ó¦¸ÃÔÚÖ¸Áî´°ÖÐÊäÈ루 £© £¨A£©x([2 7])=(0 0) £¨B£©x([2,7])=[0,0] £¨C£©x[(2,7)]=[0 0] £¨D£©x[(2 7)]=(0 0)
4¡¢ ÔÚMATLABÖУ¬ÒÀ´ÎÖ´ÐÐÒÔÏÂÖ¸Áclear;A=ones(3,4); A(:)=[-6:5];Õâʱ£¬
ÈôÔÚÖ¸Áî´°ÖÐÊäÈëÖ¸Áîb=A(:,2)'£¬ÄÇô£¬MATLABÊä³öµÄ½á¹ûÓ¦¸ÃÊÇ£¨ £© £¨A£©b = -3 -2 -1 £¨B£©b = -2 -1 0 1 £¨C£©b = -5 -1 3 £¨D£©b = -5 -2 1 4
5¡¢ ÔÚMATLABÖУ¬A = 1:9£¬ÏÖÔÚÖ´ÐÐÈçÏÂÖ¸ÁîL1 = ~(A>5)£¬ÔòMATLABµÄÖ´Ðнá¹ûÓ¦
¸ÃÊÇL1 =___ 1 1 1 1 1 0 0 0 0___¡£
6¡¢ ÔÚMATLABÖУ¬ÒªÇóÔÚ±ÕÇø¼ä[0,5]ÉϲúÉú50¸öµÈ¾à²ÉÑùµÄһάÊý×éb£¬Çëд³ö¾ßÌå
µÄMATLABÖ¸Áî___linspace(0,5,50) ___¡£
7¡¢ ÔÚMATLABÖУ¬A = [0:1/2:2]*pi£¬ÄÇôsin(A) = ___[0 1 0 -1 0]_____¡£
8¡¢ ÔÚMATLABÖУ¬A=[1,2,3;4,5,6;7,8,0]£¬B=[2,1,6;8,5,2;14,2,1]¡£Ð´³öÏÂÃæMATLABÓï¾ä
Ö´ÐеĽá¹û£º(Ϊ½Úʡƪ·ù£¬°Ñ¾ØÕóд³Émat2strµÄÐÎʽ) £¨1£© A==B [0 0 0; 0 1 0; 0 0 0] £¨2£© A.*B [2 2 18;32 25 12;98 16 0] £¨3£© A(:)' [1 4 7 2 5 8 3 6 0] £¨4£© A(1,:)*B(:,3) 13
9¡¢ ÔÚMATLABÖУ¬Ð´³öÏÂÃæMATLABÓï¾äÖ´ÐеĽá¹û£º
£¨1£© clear,A = ones(2,6) A =
1 1 1 1 1 1 1 1 1 1 1 1
£¨2£© A(:) = 1:2:24 A =
1 5 9 13 17 21 3 7 11 15 19 23 £¨3£© A([1:3:7]) ans =
1 7 13
£¨4£© diag(diag(A)) ans =
1 0 0 7
£¨5£© B = A£¨:,end:-1:1) B =
21 17 13 9 5 1 23 19 15 11 7 3 10¡¢ Çë±àдһ¶Îmatlab³ÌÐò£¬Íê³ÉÒÔϹ¦ÄÜ£º
£¨1£© Éú³ÉÒ»¸ö100ÐУ¬200ÁеĶþÎ¬Ëæ»úÊý×飻
A=rand(100,200);
£¨2£© ÕÒ³öÊý×éAÖÐËùÓдóÓÚ0.49ÇÒСÓÚ0.51µÄÔªËØµÄµ¥Ï±ꣻ
Idx=find(A(:)>0.49 & A(:)<0.51)
£¨3£© Êý×éAÖÐÂú×㣨2£©ÖеÄÌõ¼þµÄÔªËØÓжàÉÙ¸ö£¿
length(Idx)
£¨4£© Çó³öÊý×éAÖÐÂú×㣨2£©ÖеÄÌõ¼þµÄÔªËØµÄºÍ£¬²¢Çó³öÕâÐ©ÔªËØµÄƽ¾ùÖµ£»
sum(A(Idx)), m=mean(A(Idx))
£¨5£© ½«£¨4£©Çó³öµÄƽ¾ùÖµ¸³Öµ¸øÊý×éAÖÐÂú×㣨1£©ÖеÄÌõ¼þµÄÿ¸öÔªËØ¡£
A(Idx)=m;
11¡¢ Çë±àдһ¶Îmatlab³ÌÐò£¬Íê³ÉÒÔϹ¦ÄÜ£º
£¨1£© ÕÒ³ö100µ½200Ö®¼äµÄËùÓÐÖÊÊý£¬½«ÕâЩÖÊÊý´æ·ÅÔÚÒ»¸öÐÐÊý×éÀ
X=100:200;
p=X(isprime(X))
£¨2£© Çó³öÕâЩÖÊÊýÖ®ºÍ£»
sum(p)
£¨3£© Çó³ö100µ½200Ö®¼äµÄËùÓзÇÖÊÊýÖ®ºÍ£¨°üÀ¨100ºÍ200£©¡£
sum(X(~isprime(X)))
12¡¢ y??0.7???2cosx?sinx £¬±àдһ¶Îmatlab³ÌÐò£¬ÒªÇóÈçÏÂ
(1?x2)??£¨1£© ÔÚ[0,2?]Çø¼ä£¬Ã¿¸ô0.01ȡһxÊýÖµ£¬¼ÆËã³öÏàÓ¦µÄyµÄº¯ÊýÖµ£»
x=0:0.01:2*pi;
y=(0.7+2*cos(x)./(1+x.^2)).*sin(x)
£¨2£© ¸ù¾ÝMATLAB¼ÆËã³öµÄÊý¾Ý£¬ÕÒ³öÔÚ[0,2?]Äڸú¯ÊýµÄ¼«Ð¡ÖµµÄ×ø±ê¡£
[my,idx]=min(y) x(idx)
ÊýÖµ¼ÆËã
1¡¢ ÔÚMATLABÖУ¬AÊÇÒ»¸ö10¡Á10Êý×飬ÎÒÃǰѸÃÊý×é¿´³É¾ØÕóµÄ»°£¬Ôò´Ë¾ØÕóµÄÐÐÁÐ
ʽֵ = ___det(A)__£¬´Ë¾ØÕóµÄÄæ¾ØÕó£¨Èç¹û´æÔڵϰ£© = _inv(A)___¡££¨ÓÃMATLABµÄº¯Êý±íʾ£© 2¡¢ Çó½âÏÂÁз½³Ì×飺
?x1?x2?3x3?x4?2?x?x?x?1?234??x1?x2?2x3?2x4?4??x1?x2?x3?x4?0?3x?4y?7z?12w?4?5x?7y?4z?2w??3? ?x?8z?5w?9????6x?5y?2z?10w??8A=[1 1 3 -1;0 1 -1 1;1 1 2 2;1 -1 1 -1];
b=[2;1;4;0]; x=A\\b
A=[3 4 -7 -12;5 -7 4 2;1 0 8 -5;-6 5 -2 10]; b=[4;-3;9;-8]; xyzw=A\\b
3¡¢ ÇóÓÐÀí·ÖʽR??x2?2x?2??5x?2x?1?32?3x3?x??x3?0.5?µÄÉ̶àÏîʽºÍÓà¶àÏîʽ
n=conv([3 0 1 0],[3 0 0 0.5]); d=conv([1 2 -2],[5 2 0 1]); [q,r]=deconv(n,d)
424¡¢ Ò»Ôª¶àÏîʽp?2x?3x?4x£¬Ð´³ö±íʾpµÄMATLABÓï¾ä__p=[2 0 -3 4 0]__£¬Çó
.3ʱpµÄÊýÖµµÄMATLABÓï¾äp?0µÄ¸ùµÄMATLABÓï¾äÊÇ____ roots(p)__£¬Çóx?4ÊÇ__ polyval(p,4.3)___¡£
³ÌÐòÉè¼Æ
1¡¢ M½Å±¾ÎļþºÍº¯ÊýÎļþµÄÓÐÊ²Ã´Çø±ð£¿
×îÖ÷ÒªµÄ²î±ðÊÇ£¬º¯ÊýÓÐ×Ô¼ºµÄ¶ÀÁ¢¹¤×÷Çø£¬ºÍÍâ½çµÄÐÅÏ¢½»»»Í¨¹ýÊäÈëÊä³ö²ÎÊýʵÏÖ£»¶ø½Å±¾Ã»ÓжÀÁ¢¹¤×÷Çø£¬ÆäÖ±½ÓʹÓÃËÞÖ÷³ÌÐòµÄ¹¤×÷Çø£¬²¢°Ñ½á¹ûÁôÔÚËÞÖ÷³ÌÐòÖС£ 2¡¢ ÕÆÎÕÏÂÃæ³ÌÐòÉè¼ÆÖг£Óõĺ¯Êý¼°¹Ø¼ü×Ö£º
input pause warning nargin nargout for while if elseif else switch case otherwise end try catch break continue end 3¡¢ ·Ö±ðÓÃforºÍwhileÑ»·Óï¾ä¼ÆËãK??2µÄ³ÌÐò¡£»¹Çëд³öÒ»ÖÖ±ÜÃâÑ»·µÄ¼ÆËã³Ì
ii?063Ðò¡££¨²»ÒªÓÃsymsumº¯Êý£© K=0; for i=0:63 K=K+i; end
K=0; i=0; while i<=63 K=K+i; i=i+1; end
K = sum(2.^(0:63))
4¡¢ MATLABÌṩÁËÁ½ÖÖÑ»·½á¹¹£¬Ò»ÖÖÊÇforÑ»·½á¹¹£¬ÁíÒ»ÖÖÊÇ__while_Ñ»·½á¹¹¡£ 5¡¢ ±àдMº¯ÊýÇóºÍs?1?2?3???n
function s=mysum(n) s = sum(1:n); 6¡¢ ±àдMº¯ÊýÇó»ýp?1?2?3???n
function p=mysum(n) p = prod(1:n);
7¡¢ ±àдMº¯ÊýÁгö´ÓÕûÊýaµ½ÕûÊýbÖ®¼äÄܱ»3Õû³ýµÄÆæÊý¡£
function r=odds3(a,b) r=a:b;
r=r(mod(r,2)==1&mod(r,3)==0)
8¡¢ ±àдM½Å±¾Áгö´Ó100µ½200²»Äܱ»3Õû³ýͬʱҲ²»Äܱ»7Õû³ýµÄÊý¡£
X=100:200;
X(mod(X,3)~=0&mod(X,7)~=0)
9¡¢ Ò»ÕÅÖ½ºñ0.06mmÇÒ×ã¹»´ó£¬ÊÔÎʽ«Ö½¶ÔÕÛ¶àÉٴΣ¬Æäºñ¶È½«³¬¹ý10000m£¿
°´ÌâÒ⣬¾ÍÊÇÒªÇó2^n * 0.06E-3 >= 10000£¬ËùÒÔ n = ceil(log(10000/0.06e-3)/log(2))
10¡¢ ±àдMATLAB½Å±¾Êä³ö¡°Ë®ÏÉ»¨Êý¡±¼°Ë®ÏÉ»¨ÊýµÄ¸öÊý¡£Ëùν¡°Ë®ÏÉ»¨Êý¡±ÊÇÒ»¸ö3
λÊý£¬Æä¸÷λÊý×ÖµÄÁ¢·½ºÍµÈÓÚ¸ÃÊý±¾Éí¡£ÀýÈç153?1?5?3¡£ c=0;
for n=100:999
m=[fix(n/100) fix(mod(n,100)/10) mod(n,10)]; if n==sum(m.^3),
fprintf('%i = %i^3 + %i^3 + %i^3\\n',n,m)£» c=c+1; end end
fprintf('\\n¹²%i¸öË®ÏÉ»¨Êý\\n',c)
Êä³ö½á¹û£º
153 = 1^3 + 5^3 + 3^3 370 = 3^3 + 7^3 + 0^3 371 = 3^3 + 7^3 + 1^3 407 = 4^3 + 0^3 + 7^3
¹²4¸öË®ÏÉ»¨Êý
333»æÍ¼
1¡¢ MATLABÖУ¬»æÖÆÈýάÇúÃæÍ¼µÄº¯ÊýÊÇ£¨ £©
£¨A£©surf £¨B£©plot £¨C£©subplot £¨D£©plot3 2¡¢ MATLABÖУ¬Òª»æÖÆÈýά¿Õ¼äÇúÏߣ¬Ó¦¸ÃʹÓ㨠£©º¯Êý¡£
£¨A£©polar £¨B£©plot £¨C£©subplot £¨D£©plot3
3¡¢ ÔÚMATLABÖУ¬AÊÇÒ»¸ö1000ÐÐ2ÁеĶþάÊýÖµÊý×飬ÏÖÔÚÒª°ÑAµÄµÚÒ»ÁÐÊý¾Ý×÷
Ϊºá×ø±ê£¬°ÑAµÄµÚ¶þÁÐÊý¾Ý×÷Ϊ×Ý×ø±ê£¬»³öÒ»ÌõÇúÏߣ¬ÊÔд³öÏàÓ¦µÄMATLABÓï¾ä_____plot(A(:,1),A(:,2))______¡£
4¡¢ MATLAB»æÍ¼Ö¸ÁîÖеÄ__subplot_Ö¸ÁîÔÊÐíÓû§ÔÚͬһ¸öͼÐδ°Àï²¼Öü¸¸ö¶ÀÁ¢µÄ×Ó
ͼ¡£ 5¡¢ ±àдһ¶Îmatlab³ÌÐò£¬»æÖƳö¶þÔªº¯Êýz?2sinxsinyÈýÎ¬ÍøÏßͼ£¬ÒªÇóÈçÏ£º
xy£¨1£©x£¬yµÄȡֵ·¶Î§Îª?9?x?9£¬?9?y?9£» £¨2£©x£¬yÿ¸ô0.5ȡһ¸öµã£»
£¨3£©Í¼ÐεÄÏßÐͺÍÑÕÉ«ÓÉMATLAB×Ô¶¯É趨