内容发布更新时间 : 2025/7/4 16:59:06星期一 下面是文章的全部内容请认真阅读。
⑤┐B(u) →┐A(u) T②E ⑥C(u)→┐A(u) T④⑤I ⑦(?x)(C(x)→┐A(x)) UG⑥
d) (?x)(A(x)∨B(x)),( ?x)(B(x)→┐C(x)),( ?x)C(x)? (?x)A(x) ①( ?x)(B(x)→┐C(x)) P
②B(u)→┐C(u) US① ③( ?x)C(x) P
④C(u) US③ ⑤┐B(u) T②④I ⑥ (?x)(A(x)∨B(x)) P ⑦A(u)∨B(u) US
⑧A(u) T⑤⑦I ⑨(?x)A(x) UG⑧ (2) 证明:
a)①( ?x)P(x) P(附加前提) ②P(u) US① ③(?x)(P(x)→Q(x)) P ④P(u)→Q(u) US③ ⑤Q(u) T②④I ⑥(?x)Q(x) UG⑤ ⑦( ?x)P(x)→(?x)Q(x) CP b)因为(?x)P(x)∨(?x)Q(x)?┐(?x)P(x) →(?x)Q(x)
故本题就是推证(?x)(P(x)∨Q(x))?? ┐(?x)P(x) →(?x)Q(x) ①┐(?x)P(x) P(附加前提) ②( ?x)┐P(x) T①E ③┐P(c) ES② ④(?x)(P(x)∨Q(x)) P ⑤P(c)∨Q(c) ES④ ⑥Q(c) T③⑤I ⑦( ?x) Q(x) EG⑥ ⑧┐(?x)P(x) →(?x)Q(x) CP (3)
解:a)设R(x):x是实数。Q(x):x是有理数。I(x):x是整数。 本题符号化为:
(?x)(Q(x) →R(x)) ∧(?x)(Q(x) ∧I(x))?? (?x)(R(x) ∧I(x)) ①(?x)(Q(x) ∧I(x)) P ②Q(c) ∧I(c) ES① ③(?x)(Q(x) →R(x)) P
④