内容发布更新时间 : 2024/11/2 16:36:35星期一 下面是文章的全部内容请认真阅读。
下降为0
13.在我们所使用的教材中对单纯形目标函数的讨论都是针对 B 情况而言的。
A min B max C min + max D min ,max任选
14.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有 B
A无界解 B无可行解 C 唯一最优解 D无穷多最优解
三、名词、简答 1.人造初始可行基:
答:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常
在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。 2.单纯形法解题的基本思路?
答:可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函
数值逐步得到改善,直到最后球场最优解或判定原问题无解。
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都
有一个求最小值/极小值的线性规划问题与之对应,反之亦然。
2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系
数。
3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。
5.若原问题可行,但目标函数无界,则对偶问题不可行。
6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳
基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。 7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优
解Y﹡= CBB-1。
8.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡= Y﹡b。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
第 11 页共40页
10.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡=Y*b。 11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb
YA≥c Y≥0_。
12.影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。 13.线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系
数矩阵为AT 。
14.在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2,?n),则
原问题_无解。 二、单选题
1.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为A形式。 A.“≥” B.“≤” C,“>” D.“=”
2.设X、Y分别是标准形式的原问题与对偶问题的可行解,则 C 。
3.对偶单纯形法的迭代是从_ A_开始的。
A.正则解 B.最优解 C.可行解 D.基本解 4.如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优
目标函数值w﹡A。
A.W﹡=Z﹡ B.W﹡≠Z﹡ C.W﹡≤Z﹡ D.W﹡≥Z﹡ 5.如果某种资源的影子价格大于其市场价格,则说明_ B
A.该资源过剩B.该资源稀缺 C.企业应尽快处理该资源D.企业应充分利用
该资源,开僻新的生产途径 三、名词、简答题
1、对偶可行基:凡满足条件δ=C-CBB-1A≤0的基B称为对偶可行基。 2、.对称的对偶问题:设原始线性规划问题为maxZ=CX s.t AX≤b X ≥0 称线性规划问题minW=Yb s.t YA≥C
Y≥0 为其对偶问题。又称它
们为一对对称的对偶问题。
3、影子价格:对偶变量Yi表示与原问题的第i个约束条件相对应的资源的影子
价格,在数量上表现为,当该约束条件的右端常数增加一个单位时(假设
第 12 页共40页
原问题的最优解不变),原问题目标函数最优值增加的数量。
4.影子价格在经济管理中的作用。(1)指出企业内部挖潜的方向;(2)为资源
的购销决策提供依据;(3)分析现有产品价格变动时资源紧缺情况的影响;(4)分析资源节约所带来的收益;(5)决定某项新产品是否应投产。 5.线性规划对偶问题可以采用哪些方法求解?(1)用单纯形法解对偶问题;(2)
由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基
6、一对对偶问题可能出现的情形:1.原问题和对偶问题都有最优解,且二者相
等;2.一个问题具有无界解,则另一个问题具有无可行解;3.原问题和对偶问题都无可行解。
第五章 线性规划的灵敏度分析
一、填空题
1、灵敏度分析研究的是线性规划模型的原始、最优解数据变化对产生的影响。 2、在线性规划的灵敏度分析中,我们主要用到的性质是_可行性,正则性。 3.在灵敏度分析中,某个非基变量的目标系数的改变,将引起该非基变量自身
的检验数的变化。
4.如果某基变量的目标系数的变化范围超过其灵敏度分析容许的变化范围,则
此基变量应出基。
5.约束常数b;的变化,不会引起解的正则性的变化。
6.在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在
灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是Z*+yi△b (设原最优目标函数值为Z﹡)
7.若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最
优单纯形表的基础上运用对偶单纯形法求解。
8.已知线性规划问题,最优基为B,目标系数为CB,若新增变量xt,目标系数
为ct,系数列向量为Pt,则当Ct≤CBB-1Pt时,xt不能进入基底。
9.如果线性规划的原问题增加一个约束条件,相当于其对偶问题增加一个变量。 10、若某线性规划问题增加一个新的约束条件,在其最优单纯形表中将表现为
增加一行,一列。
第 13 页共40页
11.线性规划灵敏度分析应在最优单纯形表的基础上,分析系数变化对最优解
产生的影响
12.在某生产规划问题的线性规划模型中,变量xj的目标系数Cj代表该变量所
对应的产品的利润,则当某一非基变量的目标系数发生增大变化时,其有可能进入基底。 二、单选题
1.若线性规划问题最优基中某个基变量的目标系数发生变化,则C。 A.该基变量的检验数发生变化B.其他基变量的检验数发生变化C.所有非基
变量的检验数发生变化D.所有变量的检验数都发生变化
2.线性规划灵敏度分析的主要功能是分析线性规划参数变化对D的影响。 A.正则性B.可行性C.可行解D.最优解
3.在线性规划的各项敏感性分析中,一定会引起最优目标函数值发生变化的是
B。
A.目标系数cj的变化B.约束常数项bi变化C.增加新的变量 D.增加新约束 4.在线性规划问题的各种灵敏度分析中,B_的变化不能引起最优解的正则性变
化。
A.目标系数B.约束常数C.技术系数D.增加新的变量E.增加新的约束条件 5.对于标准型的线性规划问题,下列说法错误的是C
A.在新增变量的灵敏度分析中,若新变量可以进入基底,则目标函数将会得到
进一步改善。B.在增加新约束条件的灵敏度分析中,新的最优目标函数值不可能增加。C.当某个约束常数bk增加时,目标函数值一定增加。D.某基变量的目标系数增大,目标函数值将得到改善
6.灵敏度分析研究的是线性规划模型中最优解和 C 之间的变化和影响。 A 基 B 松弛变量 C原始数据 D 条件系数 三、多选题
1.如果线性规划中的cj、bi同时发生变化,可能对原最优解产生的影响是_ ABCD. A.正则性不满足,可行性满足B.正则性满足,可行性不满足C.正则性与可
行性都满足D.正则性与可行性都不满足E.可行性和正则性中只可能有一个受影响
第 14 页共40页
2.在灵敏度分析中,我们可以直接从最优单纯形表中获得的有效信息有ABCE。 A.最优基B的逆B-1 B.最优解与最优目标函数值C.各变量的检验数D.对偶
问题的解E.各列向量
3.线性规划问题的各项系数发生变化,下列不能引起最优解的可行性变化的是
ABC_。
A.非基变量的目标系数变化 B.基变量的目标系数变化C.增加新的变量D,
增加新的约束条件 4.下列说法错误的是ACD
A.若最优解的可行性满足B-1 b≥0,则最优解不发生变化B.目标系数cj发生
变化时,解的正则性将受到影响C.某个变量xj的目标系数cj发生变化,只会影响到该变量的检验数的变化D.某个变量xj的目标系数cj发生变化,会影响到所有变量的检验数发生变化。 四、名词、简答题
1.灵敏度分析:研究线性规划模型的原始数据变化对最优解产生的影响 2.线性规划问题灵敏度分析的意义。(1)预先确定保持现有生产规划条件下,
单位产品利润的可变范围;(2)当资源限制量发生变化时,确定新的生产方案;(3)确定某种新产品的投产在经济上是否有利;(4)考察建模时忽略的约束对问题的影响程度;(5)当产品的设计工艺改变时,原最优方案是否需要调整。
第六章 物资调运规划运输问题
一、填空题
1. 物资调运问题中,有m个供应地,Al,A2?,Am,Aj的供应量为ai(i=1,
2?,m),n个需求地B1,B2,?Bn,B的需求量为bj(j=1,2,?,n),则
供需平衡条件为 ?ai=?i?1mnbi
j?12.物资调运方案的最优性判别准则是:当全部检验数非负时,当前的方案一定
是最优方案。
3.可以作为表上作业法的初始调运方案的填有数字的方格数应为m+n-1个(设
问题中含有m个供应地和n个需求地)
4.若调运方案中的某一空格的检验数为1,则在该空格的闭回路上调整单位运
臵而使运费增加1。
第 15 页共40页