内容发布更新时间 : 2025/1/11 20:35:29星期一 下面是文章的全部内容请认真阅读。
郑州大学现代远程教育
《结构力学》
课程学习指导书(本科)
作者:樊友景
郑州大学土木工程学院
结构力学课程学习指导书
第一章 绪论
一、本章学习目标:
1、了解结构力学的任务,及其与其他课程间的关系、常见杆件结构的类型。 2、掌握结构计算简图的概念和确定计算简图的原则。
3、掌握杆件结构的支座分类及结点分类。掌握杆件结构的支座和结点的受力性能和
约束性质。。
二、本章重点、要点:
1、识记:各种支座能产生的反力,全铰与半铰的区别,计算简图的含义,确定计算
简图的原则。 2、领会:铰结点、刚结点和组合结点的受力特征和变形特征。
第二章 平面体系的几何组成分析
一、本章学习目标:
1、理解几何不变体系、几何可变体系、刚片、自由度和计算自由度、约束等概念并理解瞬变体系和常变体系的区别。
2、掌握无多余约束的几何不变体系的几何组成规则,并能运用这些规则分析体系的几何组成。
3、理解体系的几何特性与静力特性。
二、本章重点、要点:
1、识记:几何不变体系、几何可变体系、常变体系、瞬变体系的概念;可用作建筑
结构的体系;自由度、刚片、约束的概念;把复铰折算成单铰的算式;无多余约束的几何不变体系的组成规则;二元体的概念。
2、领会:点与刚片的自由度;连杆、单铰的约束作用;虚铰的概念及其约束作用。
静定结构的几何特性和静力特性。
3、应用:体系的几何组成分析。
三、本章练习题:
1、判断题
1.1多余约束是体系中不需要的约束。
( ) ( ) ( ) ( )
1.2瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。( ) 1.3两根链杆的约束作用相当于一个单铰。 1.4每一个无铰封闭框都有三个多余约束。 1.5连接四个刚片的复铰相当于四个约束。
1.6图示体系是由三个刚片用三个共线的铰ABC相连,故为瞬变体系。 ( ) 1.7图示体系是由三个刚片用三个共线的铰ABC相连,故为瞬变体系。 ( )
A B Ⅲ AⅠ Ⅲ B C Ⅰ Ⅱ 题1.6图
Ⅱ C 题1.7图
2、单项选择题
2.1将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个
A 2
B 3
C
4
D 6
( )
2.2三刚片组成无多余约束的几何不变体系,其联结方式是
A 以任意的三个铰相联 C 以三对平行链杆相联 A 产生很小的内力 C 产生很大的内力
( )
B 以不在一条线上三个铰相联 D 以三个无穷远处的虚铰相联
( )
( )
B 不产生内力
2.3瞬变体系在一般荷载作用下
D 不存在静力解答
2.4从一个无多余约束的几何不变体系上去除二元体后得到的新体系是
C 几何可变体系 D 几何瞬变体系 2.5图示体系属于
A 静定结构
2.6图示体系属于
C
题2.5图
题2.6图
A 无多余约束的几何不变体系 B 有多余约束的几何不变体系
( )
B 超静定结构 C 常变体系 D 瞬变体系
B D B D B D D ( )
A 无多余约束的几何不变体系
有多余约束的几何可变体系
2.7不能作为建筑结构使用的是
C 几何不变体系
2.8一根链杆
C
B
有多余约束的几何不变体系 瞬变体系
( )
有多余约束的几何不变体系 几何可变体系
有一个自由度
( ) ( )
A 无多余约束的几何不变体系
A 可减少两个自由度
有两个自由度
2.9图示体系是
C
2.10图示体系是
C A 1 题2.9图
可减少一个自由度
A 瞬变体系 有一个自由度和一个多余约束的可变体系
有两个多余约束的几何不变体系
Ⅱ Ⅲ Ⅰ 无多余约束的几何不变体系
题2.10图
D
( )
A 瞬变体系 B 有一个自由度和一个多余约束的可变体系
有两个多余约束的几何不变体系
( )
1 1 B C D 无多余约束的几何不变体系
2.11 下列那个体系中的1点不是二元体
1 3、分析题
3.1对图示体系进行几何组成分析。 3.2对图示体系进行几何组成分析。
四.答案与解答
1、判断题
1.1 × 多余约束的存在要影响体系的受力性能和变形性能,是有用的。 1.2 √ 1.3 × 连接两刚片的两根不共线的链杆相当于一个单铰(瞬铰)的约束作用。 1.4 √ 1.5 × 相当于(4-1)=3个单铰,相当于6个约束。 1.6 × BC杆使用两次。将刚片Ⅲ视为链杆,去除二元体后剩下体系如题1.6答图所示,有一个自由度。
1.7 × AB杆不能既作为刚片Ⅲ的一部分又作为刚片Ⅰ、Ⅱ连接链杆。去除二元体后剩下的体系如题1.7答图所示,有一个自由度。
2、单项选择题 2.1 D 2.5 A 2.9 D
2.2 B 2.6 C
2.3 C 2.7 D
2.4 A 2.8 D Ⅲ Ⅰ 题2.10答图
(a)
题3.2图
(b)
题3.1图 (c) (d) (a) (b) Ⅰ A Ⅰ B Ⅱ C Ⅱ 题1.6答图 题1.7 答图 A Ⅱ C 铰A是相当于两个单铰的复
Ⅲ D 铰,体系是三个刚片用四个单铰相连,用了8个约束,有两个多余约束。或视为在一个刚片中加入了两根链杆。
2.10 B 把刚片Ⅱ视为链杆,然后去 除二元体A,剩下两个刚片用一个单铰相连,
Ⅰ 有一个自由度,而刚片Ⅰ中CD杆是多余约束。 2.11 C
3、分析题
3.1(a)依次去掉二元体A,B,C,D剩下右图所示的并排简支梁,故原体系为无多余约束的几何不变体系。
B A D C 题3.1(a)答图
3.1(b)先去除基础,刚片Ⅰ有两个多余约束,刚片Ⅱ有四个多余约束,ⅠⅡ用一个铰一根链杆,故原体系为有6个多余约束的几何不变系。
题3.1(b)答图
A Ⅱ A C D Ⅰ Ⅲ Ⅱ B Ⅰ 题3.1(c)答图
题3.1(d)答图
3.1(c)依次去掉基础、二元体A、B,剩下图示部分为两刚用两个铰相联,有一个余约束,故原体系为有一个多余约束的几何不变系。
3.1(d)去掉右端二元体后剩下部分如图,刚片ⅠⅡ用两杆水平支杆相联(形成水平无穷远处的虚铰),ⅠⅢ用两根竖向支杆相联(形成竖向无穷远处的虚铰)ⅡⅢ用铰A相联。三铰不共线,故原体系几何不变无多余约束。
3.2(a)先去除基础,由一基本三角形开始,增加二元体扩大刚片的范围,将体系归结为两刚片用一个铰一根链杆相连(题3.2(a)答图),故原体系为无多余约束的几何不变系。
3.2(b)先去除基础,由一基本三角形开始,增加二元体扩大刚片的范围,将体系归结为两刚片用①②③④四根链杆相连(如题3.2(c)答图),有一个多余约束的几何不变。
题3.2 (a) 答图 题3.2 (b) 答图
第三章 静定结构内力分析
一、本章学习目标:
1、熟练掌握支座反力计算、截面内力计算;绘制内力图的基本方法。
2、会利用内力图的形状特征及结点平衡条件简化内力图的绘制;会运用叠加法绘制弯矩图。
3、了解多跨静定梁、主从刚架的组成特点和受力特点及内力计算和内力图的绘制。 4、熟练绘制各种静定梁和静定刚架的弯矩图。
5、理解三铰拱的受力特点及拱结构的优点和缺点,三铰拱的支座反力计算及反力特点。三铰拱的合力拱轴线定义、特点及常用的合力拱轴线的形状。
6、掌握桁架的受力特点及按几何组成分类。运用截面法计算桁架中指定杆的内力。会找出桁架中的零杆。
二、本章重点、要点: