内容发布更新时间 : 2024/11/8 3:03:43星期一 下面是文章的全部内容请认真阅读。
1. (20分)如图所示,油在光滑管中以u=2m/s的速度流动,油的密度ρ=920kg/m3,管长L=3m,直径d=50mm,水银压差
计测得R=15.0mm。试求: (1)油在管中的流动形态; (2)油的粘度;
0.25
(3)若保持相同的平均流速反向流动,压差计读数有何变化?层流:λ=64/Re;湍流:λ=0.3164/Re。 解:
1
2
A B R C D (1)列1截面和2截面间柏努利方程,取2截面为基准面
2u12p2u2gZ1???gZ2????hf?2?2
p1
?hf?pD = pD
p1?p2???Z1?Z2?g
pC = p2 +(Z2 – ZA)ρg + Rρ0g
pD = p1 + (Z1 – Z2)ρg +(Z2 – ZB)ρg + Rρg p1 – p2 = R(ρ0 -ρ)g -(Z1 – Z2)ρg R(ρ0 -ρ)g = p1 – p2 +(Z1 – Z2)ρg
?hf?R?0??13600?920g?0.015??9.81?2.03(J/kg) ?920?0.3164 0.25Re设管中为湍流:?
Lu20.3164Lu2?hf???d?2?Re0.25?d?2?2.03 Re0.25
0.3164322????18.70342.030.052 Re = 1.224×10 > 2000 (湍流)
5
∴ 油在管中为湍流流动 (8分)
(2) Re?du???1.224?105
??0.05?2?920?4?Pa?s??0.7516(cP) (4分) ?7.516?1051.224?10(3)列1截面和2截面间柏努利方程,取2截面为基准面 1
2u2p1u12gZ2???gZ1????h?f?2?2p2
?h?f?p2?p1?Lu2??Z2?Z1?g????d2
∴ ∑hf′= ∑hf
∵ |Z2 – Z1| = |Z1 – Z2| ∴ |p2 – p1| = |p1 – p2|
即压差计读数R不变,但左边低右边高。 (8分)
2. (20分)如图所示,已知:D = 100mm,d = 50mm,H = 150mm,ρ气= 1.2kg/m3。当U形管读数R = 25mm时,将水从
水池中吸入水平管中,问此时气体流量V为多少m3/s(阻力可忽略)。
Pa
R 1 Hg d 气体 2 0 D Pa 2′ H 1′ 水
解:以0截面为基准,列截面1和截面2之间的柏努利方程
p1u1pu ??2?2?g2g?g2g
22
p1 = ρHgRg = 13600×0.025×9.81 = 3335(Pa) p2 = -Hρ水g = -0.15×1000×9.81 = -1472(Pa) ?D242u1??d24u2 2?D??100?u2???u1???u1?4u1 d50????222 u1p?p1u2p?p116u1?2??2?2g?g2g?g2g15u1?2
2?p1?p2??
u1?2?p1?p2?2??3335?1472???23.11(m/s)
15?15?1.22
3.14?0.12V?u1??23.11?0.1814(m3/s)?653.1(m3/h)
44?D23. (16分)如图示循环管路,离心泵的安装高度Hg=3m,泵特性曲线可近似表示为:H=23-1.43×105Q2,式中Q以m3/s
表示。吸入管长(包括全部局部阻力的当量长度)为10m,排出管长(包括全部局部阻力的当量长度)为120m,管内径均为50mm,假设摩擦系数λ=0.02,水温20℃。试求: (1)管路内的循环水量为多少? (2)泵进、出口压强各为多少?
(1)列管路进出口间柏努利方程
2p1u12p2u2??He?z2????Hf z1??g2g?g2gHg
∵ z1 = z2 u1 = u2 p1 = p2
∴ He??Hflu?????d222gl?4V?????d?d2?2g2
Hel8V?????5
2
d5?2g?0.02?120?108??V2 520.053.14?9.81 He = 6.88×10 V
∵ H = 23 – 1.43×10 Q H = He V = Q
∴ 23 – 1.43×10 V = 6.88×10 V V = 5.26×10 m/s = 18.9 m/h (8分) (2)列进水液面与泵入口处之间柏努利方程
5
2
5
2
-3
3
3
5
2
l1u12pau12p1? ?Hg???????g2g?gd2g4V4?5.26?10?3u1?2??2.68(m/s) 2?d3.14?0.05?l1?u12??pa?p1?Hg?g???1???d??2?
??10?2.682?pa?p1?3?1000?9.81??1?0.02??1000?47386??0.05?2?列进水液面与泵出口处之间柏努利方程
(Pa)(真空度)
222l1u2l1?u2pau2p2p2??????He?Hg???????Hg???1???
???g2g?gd2g?g?d?2g 3
2?l1?u2??p2?pa??He?Hg??g???1???d??2? ??u2 = u1 = 2.68 m/s
He = 6.88×10 V = 6.88×10×(5.26×10) = 19(m)
5
2
5
-32
10?2.682?p2?pa??19?3??1000?9.81??1?0.02??1000?1.39?105(Pa) ??0.05?2?(表压) (4分)
4. (40分)如图所示,用清水泵将池A中水打到高位槽B中,泵的特性曲线可用H=25-0.004Q2表达,式中Q的单位为
m3/h,吸入管路的阻力损失为4m水柱,泵出口处装有压力表,泵的阻力损失可忽略。管路为Ф57×3.5mm钢管。管路C处装有一个调节阀,调节阀在某一开度时的阻力系数ζ=6.0,两U形管压差计读数R1=800mm,R2=700mm,指示液为CCl4(密度ρ0=1600kg/m3),连通管指示液面上充满水,水的密度ρ=1000 kg/m3,求: (1)管路中水的流量为多少?(单台泵) (2)泵出口处压力表读数为多少?(单台泵)
(3)并联一台相同型号离心泵,写出并联后泵的特性曲线方程;
(4)若并联后管路特性曲线方程L=13.5+0.006Q2,求并联后输水量为多少m3/h
B
C h P 2m R1 R2 A R CCl4 u2? 解:(1)?p???2由静力学基本方程:pa = pb pc = pd pe = pf pa = pb = p1 + ρ(h + R1)g
pc = pd = pb –ρ0 R1g = p1 + ρ(h + R1)g -ρ0 R1g
pe = pf = pd +ρ(R1 + R)g = p1 + ρ(h + R1)g -ρ0 R1g +ρ(R1 + R)g pf = p2 +ρ(h + R1 + R – R2)g +ρ0 R2g
∴ p1 + ρ(h + R1)g -ρ0 R1g +ρ(R1 + R)g = p2 +ρ(h + R1 + R – R2)g +ρ0 R2g Δp = p1 – p2 = R2ρ0g - R2ρg + R1ρ0g – R1ρg
= (R1 + R2)(ρ0 -ρ)g = (0.8 + 0.7)×(1600 - 1000)×9.807
= 8.82×10(Pa)
4
3
2?p2?8.82?103u???2.94 u = 1.71(m/s)
???6?10002Q??4d2u??4??0.05??1.71?3600?12.11(m/h)
23
(2) 列池面与泵出口压力表截面的柏努利方程
pupuz1?1?1?He?z1?2?2??Hf?g2g?g2gp1 = 0(表) u1≈0
22
p2u2?He??z2?z1????Hf?g2g2
He = H = 25 – 0.004Q = 25 – 0.004×12.11 = 24.4(m)
2
p21.712?24.4?2??4?18.25(m) ?g2?9.81p2 = 18.25ρg = 18.25×1000×9.81 = 178.9×10(Pa)(表) (3) ∵ H并 = H Q并 = 2Q ∴ Q3
?1Q并 代入H = 25 – 0.004Q 22
H并1?1?2?25?0.004??Q并??25?0.004?Q并
4?2?22H并?25?0.001Q并
2
(4) L = 13.5 + 0.006Q H并?25?0.001Q并2
并联后泵的工作点: L = H并 Q = Q并 ∴ 13.5?0.006Q并Q并 = 40.5(m/h)
5.(15分)某液体由一敞口贮槽经泵送至精馏塔,管道入塔处与贮槽液面间的垂直距离为12m,流体经换热器的压力损失为
0.3kgf/cm2,精馏塔压强为1kgf/cm2(表),排出管路为Φ114×4mm的钢管,管长为120m(包括局部阻力的当量长度),流速为1.5m/s,液体比重为0.96,摩擦系数为0.03,其它物性参数均与水极为接近。泵吸入管路压力损失为1m,吸入管径为Φ114×4mm。
试通过计算,选择下列较合适的离心泵。
(2)泵与贮槽液面间的最大垂直距离不能超过多少米? 注:当地大气压为736mmHg。
型号 2B19 3B57A
Q(m/h) 22 50
3
3
2?25?0.001Q并2
H(m) 16 37.5 5
η(%) 66 64
Hs (m) 6.0 6.4