内容发布更新时间 : 2025/1/24 13:26:16星期一 下面是文章的全部内容请认真阅读。
1.1
任意角和弧度制 1.1.1 任意角
练习
1.口答:锐角是第几象限?第一象限的角一定是锐角吗?在分别就直角、钝角来回答这两个问题.
2.口答:今天是星期三,那么7k(k?Z)天后的那一天是星期几?7k(k?Z)天前的那一天是星期几?100天后的那一天是星期几?
3.已知角的顶点与直角坐标系的原点重合,始边与x轴的负半轴重合,作出下列各角,并指出它们是第几象限角: (1)420°;(2)-750°;(3)855°;(4)-510°.
4.在0°~360°范围内,找出与下列各角终边相同的角,并指出他们是第几象限角: (1)-54°18′; (2)359°8′; (3)-1190°30′.
5.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来:
(1)1303°18′; (2)-225°.
1.1.2 弧度制
练习
1. 把下列角度化为弧度:
(1)22°30′; (2)-210°; (3)1200°. 2.把下列弧度化为角度: (1)
??? ; (2)?; (3)
312103.用弧度表示:
(1)终边在x轴上的角的集合; (2)终边在y轴上的角的集合.
4.利用计算机比较下列各对值的大小(精确到0.001): (1)cos0.75°和cos0.75; (2)tan1.2°和tan1.2.
5.分别用角度制、弧度制下的弧长公式,计算半径为1m的圆中,60°的圆心角所对的弧的长度(可用计算器).
6.已知半径为120mm的圆上,有一条弧的长度是144mm,求这条弧所对的圆心角(正角)的弧度数.
习题1.1 A组
1.在0°~360°范围内,找出与下列各角终边相同的角,并指出他们是第几象限角: (1)—265°;(2)-1000°;(3)-843°10′;(4)3900°. 2.写出终边在x轴上的角的集合.
3.写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β< 360°的元素β写出来: (1)60°;(2)-75°;(3)-824°30′;(4)475°; (5)90°;(6)270°;(7)180°;(8)0°
4.分别用角度和弧度写出第一、二、三、四象限的集合. 5.选择题:
(1)已知α是锐角,那么2α是( )
A.第一象限角 B.第二象限角 C.小于180度的正角 D.第一或第二象限角 (2)已知α是第一象限角,那么
a是( ) 2A.第一象限角 B.第二象限角 C.第一或第二象限角 D.第一或第三象限角 6.一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什呢? 7.把下列角度化为弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°; 8.把下列弧度化为角度: (1)?6?10?2;(2)?;(3)1.4;(4);
3379.要在半径OA=100cm的圆形金属板上截取一块扇形板,使其弧AB的长为112cm,求其
圆心角∠AOB是多少度(可用计算器,精确到1°).
10.已知弧长50cm的弧所对的圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm)
B组
1. 每人准备一把扇形的扇子,然后与本组其他同学的对比,从中选出一把展开后看上去形
状比较美观的扇子,并用计算器算出它的面积S1.
(1)假设这把扇子是从一个圆面中剪出来的,而剩余的面积是S2,求S1 与S2的比值. (2)要使S1与S2的比值是0.618,则扇子的圆心角应为多少度(精确到10°)? 2.(1)时间经过4h(时),时针、分针各转了多少度?各等于多少弧度? (2)有人说,钟的时针和分针一天会重合24次,你认为这种说法是否正确?请说明理由. (提示:从午夜零时算起,假设分针走了t min会与时针重合,一天内分针和时针会重合n次,建立t关于n的函数关系式,并画出其图象,然后求出每次重合的时间.
3.已知相互齿合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角度是多少 度,即 rad.如果大轮的转速时180r/min(转/分),小轮的半径是10.5cm,那么小轮周上一点没经过1s转过的弧长是 .
1.2 任意角的三角函数 1.2.1 任意角的三角函数
练习一:
1.利用三角函数的定义求
7?的三个三角函数值. 62.已知角θ的终边过点P(-12,5),求角θ的三角函数值. 3.填表: 角? 角?的弧度数 0° 90° 180° 270° 360° sin? cos? tan? 4.口答:设a是三角形的一个内角,在sin a,cos a,tan a,tan 5.确定下列三角函数值的符号:
a中,哪些有可能取负值? 216?; (3)cos(-450°) 517?4?(4)tan(?); (5)sin(?);(6)tan(556°)
83(1)sin 156°; (2)cos
6.选择①sin θ>0, ②sin θ<0,③ cos θ>0, ④cos θ<0, ⑤tan θ>0,⑥tan θ<0中
适当的关系式的序号填空:
(1)当角θ为第一象限角时, ,反之也对; (2)当角θ为第二象限角时, ,反之也对; (3)当角θ为第三象限角时, ,反之也对; (4)当角θ为第四象限角时, ,反之也对. 7.求下列三角函数值(可用计算器)
19?; 331?(3)sin(-1050°);(4)tan(?)
4(1)cos 1109°;(2)tan
练习二:(从图形上认识三角函数)
1.你能从单位圆中的三角函数线出发得出三角函数的哪些性质? 2.做出下列各角的正弦线、余弦线、正切线: (1)
?5?2?13?;(2);(3)?;(4)?
63633.作一个以5cm为单位长度的圆,然后分别作出225°,330°角的正弦线、余弦线、正切
线,量出他们的长度,从而写出这些角的正弦值、余弦值、正切值. 4.你认为三角函数线对认识三角函数概念有哪些作用?
1.2.2 同角三角函数的基本关系
练习: 1.已知cos a=?4,且a为第三象限角,求sin a,tan a的值. 52.已知tan φ=-3,求sin φ,cos φ的值.
3.已知sin θ=0.35,求cos θ,tan θ的值(计算结果保留两位有效数字) 4.化简:
2cos2a?1(1)cos θtan θ, (2).
1?2sin2a5.求证:
(1)sin4a-cos4a=sin2a-cos2a (2)sin4a+ sin2acos2a+ cos2a=1
习题1.2 A组
1. 用定义法、公式一以及计算器等求下列角的三个三角函数值: (1)?17?21?23?;(2);(3)?;(4)1500°. 3642.已知角a的终边上的一点P的坐标是(3a,4a),其中a≠0,求sin a,cos a,tan a 的值.
3.计算:
(1)6sin (-90°)+3sin 0°-8sin 270°+12cos 180°; (2)10cos 270°+4sin 0°+9tan 0°+15cos 360°;
??3?3?2?2?-tan+tan-sin+cos+sin;
66224463??2??cos4?tan2 (4)sin323(3)2cos4.化简:
(1)asin0?bcos90??ctan180?; (2)?pcos180??qsin90??2pqcos0?;
22?3???abcos??absin; 22?3??rsin2? (4)mtan0?ncos?psin??qcos22(3)acos2??bsin225.根据下列条件求函数
(? f(x)?sinx(1)x??4)?2sinx(??4)?4cos2x?3cosx(?3? 43?) 的值: 4?4; (2)x?6.确定下列三角函数值的符号:
(1)sin186°(2)tan505°;(3)sin7.6? ( 4) tan(?23?59?)(5)cos 940°;(6)cos(?) 4177.确定下列式子的符号:
tan108?;
cos305?511cos??tan?441166 (3)sin??cos??tan?; (4)
3?556sin2(1)tan125??sin273? (2)8.求下列三角函数值(可用计算器)
6715?); (2)tan(??); 124(3)cos398?13'; (4)tan766?15'.
(1)sin(?9.求证:
(1)角θ为第二或第四象限的角当且仅当sin??tan?<0; (2)角θ为第三或第四象限的角当且仅当cos??tan?<0; (3)角θ为第一或第四象限的角当且仅当
sin?>0; tan?(4)角θ为第一或第三象限的角当且仅当sin??cos?>0;
10.(1)已知sina??(2)已知cosa??3,tana的值 ,且a为第四象限的角,求cosa 25,且a为第二象限的角,求sina ,tana的值 133,cosa的值 (3)已知tana??,求cosa 4,tana的值(结果保留两位有效数字) (4)已知cosa?0.618,求sina 11.已知sinx??,求cosx,tanx的值. 12.已知tana?
13.求证:
1333,? 2