毕业论文(赵艳丽初稿)

内容发布更新时间 : 2025/6/11 7:34:10星期一 下面是文章的全部内容请认真阅读。

基于遗传算法的k-means聚类挖掘方法研究

计算机上用枚举法很难或甚至不可能求出其精确最优解。对这类问题,人们已意识到应把主要精力放到寻求其满意解上,而遗传算法就是寻求这种满意解的最佳工具之一。时间证明,遗传算法对于组合优化中的NP完全问题非常有效。

(3) 生产调度问题

采用遗传算法能够解决复杂的生产调度问题。在单间生产车间调度、流水线生产车间调度、生产规划、任务分配等方面遗传算法都得到了有效的应用。

(4) 自动控制

在自动控制领域中有很多与优化相关的问题需要求解,遗传算法已在其中得到了初步应用,并显示出了良好效果。例如,基于遗传算法的模糊控制器优化设计,用遗传算法进行航空控制系统的优化,使用遗传算法设计空间教会控制器等。

(5) 机器学习

基于遗传算法的机器学习,特别是分类器系统,在很多领域中都得到了应用。例如,遗传算法被用于学习模糊控制规则,利用遗传算法来学习隶属函数等。基于遗传算法的机器学习可用于调整人工神经网络的连接权,也可用于神经网络结构的优化设计。分类器系统在多机器人路径规划系统中取得了成功的应用。

(6) 图像处理

图像处理是计算机视觉中的一个重要领域,在图像处理中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,这些误差会影响图像处理的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求,遗传算法在这些图像处理的优化计算方面找到了用武之地。

(7) 机器人学

机器人是一类复杂的难以精确建模的人工系统,而遗传算法的起源来自于对人工自适应系统的研究,所以机器人学理所当然地成为遗传算法的一个重要领域。例如,遗传算法已经在移动机器人路径规划、机关节机器人运动轨迹规划、机器人逆运动学求解、细胞机器人的结构优化和行为协调等方面得到研究和应用。

3.7本章小结

本章详细介绍了遗传算法的有关知识,包括遗传的历史与发展、基本术语、遗传算法的基本要素、算法的特点、算法思想及其执行过程、应用等。

30

青岛科技大学研究生学位论文

第四章 一种改进的遗传k-means聚类算法

k-means算法是一种重要的聚类算法,算法简单、收敛速度快,被广泛地应用于各个领域。虽然k-means算法具有较强的局部搜索能力,但因对初始聚类中心敏感,容易陷入局部最优,从而影响聚类结果。遗传算法是一种高效的全局搜索方法,但其局部搜索能力较差。若将k-means算法与遗传算法相结合,互相取长补短,既通过遗传算法保证获取全局最优解,又利用k-means算法兼顾局部寻优能力,提高收敛速度,从而达到理想的聚类效果。基于这种思想,本文在简单遗传算法的基础上进行了一些改进,提出一种改进型遗传k-means聚类方法(Improved Genetic k-means Algorithm,IGKA)。

4.1 k-means算法的思想与流程

k-means算法是由J.B.MacQueen[48]于1967年提出的,目前是用于科学和工业应用的诸多算法中的一种极有影响力的技术。k-means算法属于聚类分析中的划分算法,它是一种己知聚类类别数的算法。由于本文重点研究基于遗传的k-means聚类方法,因此必须详细掌握k-means算法的基本原理。 4.1.1 k-means算法思想[49]

对于给定的包含n个数据对象的数据集,k-means算法首先要求用户指定最终划分类别数目为k,然后随机选取k个点作为聚类中心,计算剩余数据对象到各聚类中心的距离,利用距离最近原则,把数据对象归到离它最近的那个聚类中心所在的类中去,聚类结果由k个聚类中心来表达,基于给定的聚类目标函数(或者说是聚类效果判别准则),算法采用迭代更新的方法,每一次迭代过程都是朝目标函数值减小的方向进行。

k-means算法以相邻两次的聚类中心没有任何变化,数据对象调整结束,聚类准则函数J收敛

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi