内容发布更新时间 : 2025/3/10 11:03:20星期一 下面是文章的全部内容请认真阅读。
程,最终达到具有均匀温度的平衡状态。为求这一过程的熵变,我们将杆分为长度为的许多小段,如图所示。位于到的小段,初温为
(1)
这小段由初温T变到终温后的熵增加值为
(2)
其中是均匀杆单位长度的定压热容量。
根据熵的可加性,整个均匀杆的熵增加值为
(3)
式中是杆的定压热容量。
一物质固态的摩尔热量为,液态的摩尔热容量为. 假设和都可看作常量. 在某一压强下,该物质的熔点为,相变潜热为. 求在温度为时,过冷液体与同温度下固体的摩尔熵差. 假设过冷液体的摩尔热容量亦为.
解: 我们用熵函数的表达式进行计算.以为状态参量. 在讨论固定压强下过冷液体与固体的熵差时不必考虑压强参量的变化.以a态表示温度为的固态,b态表示在熔点的固态. b, a两态的摩尔熵差为(略去摩尔熵的下标不写)
(1)
以c态表示在熔点的液相,c,b两态的摩尔熵差为
(2)
以d态表示温度为的过冷液态,d,c两态的摩尔熵差为
(3)
熵是态函数,d,c两态的摩尔熵差为
(4)
物体的初温,高于热源的温度,有一热机在此物体与热源之间工作,直到将物体的温度降低到为止,若热机从物体吸取的热量为Q,试根据熵增加原理证明,此热机所能输出的最大功为
其中是物体的熵减少量。
解:以和分别表示物体、热机和热源在过程前后的熵变。由熵的相加性知,整个系统的熵变为
由于整个系统与外界是绝热的,熵增加原理要求
(1)
以分别表示物体在开始和终结状态的熵,则物体的熵变为
(2)
热机经历的是循环过程,经循环过程后热机回到初始状态,熵变为零,即
(3)
以表示热机从物体吸取的热量,表示热机在热源放出的热量,表示热机对外所做的功。 根据热力学第一定律,有
所以热源的熵变为
(4)
将式(2)—(4)代入式(1),即有
(5)
上式取等号时,热机输出的功最大,故
(6)
式(6)相应于所经历的过程是可逆过程。
有两个相同的物体,热容量为常数,初始温度同为。今令一制冷机在这两个物体间工作,使其中一个物体的温度降低到为止。假设物体维持在定压下,并且不发生相变。试根据熵增加原理证明,此过
程所需的最小功为
解: 制冷机在具有相同的初始温度的两个物体之间工作,将热量从物体2送到物体1,使物体2的温度降至为止。以表示物体1的终态温度,表示物体的定压热容量,则物体1吸取的热量为
(1)
物体2放出的热量为
(2)
经多次循环后,制冷机接受外界的功为
(3)
由此可知,对于给定的和,愈低所需外界的功愈小。
用和分别表示过程终了后物体1,物