内容发布更新时间 : 2024/12/27 14:06:01星期一 下面是文章的全部内容请认真阅读。
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
复变函数与积分变换
(修订版)
主编:马柏林
(复旦大学出版社)
——课后习题答案
1 / 66
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
习题一
1. 用复数的代数形式a+ib表示下列复数
e?iπ/4;3?5i137i?1;(2?i)(4?3i);i?1?i.
①解πe?4i?cos???π???isin??π??22?????2?4???4??i??2???2?2i ?22②解: 3?5i?3?5i??1?7i?16137i?1??1+7i??1?7i???25?25i
③解: ?2?i??4?3i??8?3?4i?6i?5?10i ④解:
13?1?i?35i?31?i=?i?2?2?2i
2.求下列各复数的实部和虚部(z=x+iy)
z?a33z?a(a?); z3;???1?i3??2??;???1?i3??2??;in. ①
:∵设z=x+iy
则z?a??x?iy??a??x?a??iy?????x?a??iy??y??a??x?a??iy?a?x?i?x?a??iy??z? ∴Re?x?a?2?y2?z?a?x2?a22?z?a????y?x?a?2?y2 Im??z?a?2xy?z?a????x?a?2?y2. ②解: 设z=x+iy
∵???????????3z3?x?iy3?x?iy2x?iy?x2?y2?2xyix?iy ∴Rez??x3?3xy2, Im?z3??3x2y?y3.?x?x2?y2??2xy2??222?y?x?y??2xy??i?x3?3xy2??3x2y?y3?i③解: ∵???1?i3?3??1?i3?3??13?2????88?????1?3???1???3?2???3???1?2?????3???3?
??? ?18?8?0i??1
∴Re???1?i3???1?i3??2?????1, Im?????0. ?2?④解:
∵?3??1?3?3???1????1?i3???3?2??3???2???1??3??3?3???i
?12?????88?8?0i??1 2 / 66
,
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
∴Re???1?i3????1, Im???1?i3?????0. ?2???2??⑤解: ∵in?????1?k,n?2kk??. ?1?k????i,n?2k?1 ∴当n?2k时,Re?in????1?k,Im?in??0;
当n?2k?1时,Re?in??0,Im?in????1?k.
3.求下列复数的模和共轭复数
?2?i;?3;(2?i)(3?2i);①解:?2?i?4?1?5.
?2?i??2?i
②解:?3?3
?3??3
③解:?2?i??3?2i??2?i3?2i?5?13?65.
?2?i??3?2i???2?i???3?2i???2?i???3?2i??4?7i
④解:
1?i1?i22?2?2
??1?i??1?i?1??2???2?i2 4、证明:当且仅当z?z时,z才是实数.
证明:若z?z,设z?x?iy,
则有 x?iy?x?iy,从而有?2y?i?0,即y=0 ∴z=x为实数.
若z=x,x∈?,则z?x?x. ∴z?z.
命题成立.
5、设z,w∈?,证明: z?w≤z?w
证明∵z?w2??z?w???z?w???z?w??z?w?
?z?z?z?w?w?z?w?w
?z2?zw??z?w??w2
?z2?w2?2Re?z?w? 3 / 66
1?i2. 复变函数与积分变换(修订版)课后答案(复旦大学出版社)
≤z?w?2z?w2222 ?z?w?2z?w ??z?w?2 ∴z?w≤z?w.
6、设z,w∈?,证明下列不等式.
z?w?z?2Rez?w?w z?w?z?2Rez?w?w
2222??2??2z?w?z?w?2z?w22?22?
2并给出最后一个等式的几何解释.
证明:z?w?z?2Rez?w?w在上面第五题的证明已经证明了. 下面证z?w?z?2Rez?w?w.
∵z?w??z?w???z?w???z?w?z?w
?z?z?w?w?z?w2222222????2??
2?z?2Rez?w?w.从而得证.
22??2∴z?w?z?w?2z?w?22?
3几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式
3?5i2π2π??;i;?1;?8π(1?3i);?cos?isin?. 7i?199??①解:
3?5i?3?5i??1?7i??
7i?1?1?7i??1?7i??38?16i19?8i17i??8???e其中??π?arctan. 5025519②解:i?ei??其中??
i?e
iπ2π. 2
③解:?1?eiπ?eπi
2④解:?8π1?3i?16π???π.
3?? ∴?8π1?3i?16π?e3??2?πi3
2π2π???isin? ⑤解:?cos99?? 4 / 66
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
2π2π??解:∵?cos?isin??1.
99??i?π.3i2π2π???isin??1?e9?e3 ∴?cos99??322π3
8.计算:(1)i的三次根;(2)-1的三次根;(3) 3?3i的平方根. ⑴i的三次根.
解:
3ππ??i??cos?isin??cos22??132kπ?ππ2kπ?2?isin233?k?0,1,2?
∴z1?cos
ππ315531?isin??i. z2?cosπ?isinπ???i 662266229931?i z3?cosπ?isinπ??6622⑵-1的三次根 解:
3?1??cosπ?isinπ?3?cos12kπ+π2kπ?π?isin33?k?0,1,2?
∴z1?cosπ?isinπ?1?3i
3322 z2?cosπ?isinπ??1
5513i z3?cosπ?isinπ???3322⑶3?3i的平方根.
πi?22?4 解: 3?3i=6???i?6?e??22???1π2i4
∴3?3i?14?6?e?ππ??2kπ?2kπ???4?isin4?6??cos??22?14?k?0,1?
iππ??∴z1?6??cos?isin??64?e8
88??1π
πi99??z2?6??cosπ?isinπ??64?e8.
88??14199.设z?ei2πn,n?2. 证明:1?z???zn?1?0
i?2πn证明:∵z?e
∴zn?1,即zn?1?0.
∴?z?1??1?z???zn?1??0 从而1?z?z2+??zn?1?0
又∵n≥2. ∴z≠1
5 / 66