内容发布更新时间 : 2025/1/11 23:10:00星期一 下面是文章的全部内容请认真阅读。
(2)画出平移后的图形。 2、在方格纸上平移图形的方法步骤 (1)找出原图形的关键点(如顶点或端点) (2)按要求分别描出各关键点平移后的对应点 (3)按原图将各对应点顺次链接。 3、平移的特点: 形状,大小不变,位置变。 三、巩固应用P87做一做 四、总结 教学 反思
第八单元 统计
主备人:执教人:课型:新授
一、【教学内容】 平均数;复式条形统计图 二、【教学目标】
1、体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义。 2、认识复式条形统计图,了解复式条形统计图的特点,能根据收集的数据在提供的样图中完成相应的复式条形统计图。
3、会看复式条形统计图,能根据图中的信息提出简单的问题,进行一些分析和判断。
4、培养学生的数据分析观念、推理能力和应用意识 三、【教学重、难点】
重点:理解平均数的意义和求平均数的方法;能根据提供的数据完成相应的复式条形统计图。
难点:理解平均数的意义;能根据纵向复式条形统计图所提供的信息提出并解决简单的实际问题。 四、【教学建议】
1、注重理解平均数在统计学上的意义。 2、利用已有知识经验引导学生主动建构新知。 3、处理好直观与抽象的关系。
4、充分考虑到信息技术对数学学习内容和方式的影响。 5、体验解决问题方法的多样性。 6、体会统计的意义和作用。
教学课题 教学课时 1 复式条形统计图 主备教师 1、认识复式条形统计图,了解复式条形统计图的特点,能根据收集的数据在提供的样图中完成相应的复式条形统计图。 教学目标 2、会看复式条形统计图,能根据图中的信息提出简单的问题,进行一些分析和判断。 3、培养学生的数据分析观念、推理能力和应用意识。 教学重点与难点 教学准备及手段 1.重点:能根据提供的数据完成相应的复式条形统计图。 2.难点:能根据复式条形统计图所提供的信息提出并解决简单的实际问题。 多媒体课件 教学流程 课型 新授课 一、导入 师:你们知道我们国家有多少人口吗? 出示例3复式统计表 这里有一张人口统计表,反映某地区1980-2000年城镇和乡村人口数量的复式统计表。 师:你能从这张统计表中知道哪些信息。 师:还可以用哪种形式来进行数据统计呢? 揭示课题,板书——条形统计图 师:以前我们学过将统计表绘制成条形统计图,那么今天我们能不能将这个统计表变成统计图呢?一起动手试一试。 出示两张统计图 师引导学生说出:标题;纵轴:代表人数,单位:万人 每一格表示10万人;横轴:表示年份,年份上的小格中对应该年人数的条形图和数据。 复习条形统计图的画法 师:你们会画吗?请大家把城镇人口的条形图补充完整再完成乡村人口的条形统计图。 二、探究新知 1、师:现在我们完成了两个单式条形统计图,它们分别反映了城镇人口和乡村人口 两种量。请你们观察比较后告诉我1980年城镇人口与乡村人口相差多少? 师:在比较过程中,你有什么感受? 师:为什么可以合二为一? 引导学生明白只有在相同项目内容下,才可以进行此操作。 2、师:我们刚才完成的城镇和乡村的人口统计图可以合二为一吗?怎么合呢? 小组讨论,动手操作绘制统计图,并展示作品学生互相评价。 师:老师这里也将他们合起来画了一张,你们看看感觉如何? 为了区分开乡村和城镇,应怎么办? 引导学生说出图例的作用,感受图例在复式条形统计图中的重要性。 板书:图例 PPT出示完成的复式条形统计图 揭示课题,板书:复式条形统计图 3、 PPT出示单式条形统计图与复式条形统计图 比较复式条形统计图与单式条形统计图有什么区别: (1) 单式条形统计图只能表达一个项目的情况,复式条形统计图可以表示两个或两个以上项目的情况。 (2) 复式条形统计图不仅可以观察一个项目,还可以进行两个项目之间的比较.。 (3) 复式条形统计图有图例而单式条形统计图没有。 4、 根据绘制好的条形统计图回答一下问题 (1) 哪年城镇人口数最多?哪年最少? (2) 哪年乡村人口数最多?哪年最少? (3) 哪年城乡人口总数最多?哪年最少? (4) 你还能得到哪些信息? 5、出示横向复式条形统计图: (1)和上边的统计图有什么不同? (2)说明:复式条形统计图还可以这样画,称作横向条形统计图。 (3)请你把它补充完整。 6、小结 三、巩固练习 四、课堂小结:谈谈你的学习收获? 教学 反思
第九单元 数学广角
主备人:执教人:课型:新授
一、【教学内容】 鸡兔同笼 二、【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。 二、【学情分析】
(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。 (2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。 三、【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。 3、在解决问题的过程中培养学生的逻辑推理能力。
三、【教学重、难点】
重点:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。 难点:理解用假设法的算理并能运用不同的方法解决实际问题。 四、【教学建议】
1、采取直观形象的方式,让学生探讨不同的方法。 2、适当把握教学要求。
教学课题 教学课时 1 鸡兔同笼 主备教师 1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 教学目标 2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。 3、在解决问题的过程中培养学生的逻辑推理能力 教学重点1.重点:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。 与难点 2.难点:理解用假设法的算理并能运用不同的方法解决实际问题。 教学准备及手段 多媒体课件 教学流程 一、历史激趣,导入新课 今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(课件出示以下情境图) 师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题) 二、探究交流,尝试解决问题。 1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示) 2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息? 让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2课型 新授课