内容发布更新时间 : 2024/11/8 2:44:24星期一 下面是文章的全部内容请认真阅读。
第7章 弯曲应力
7.1 引言
前一章讨论了梁在弯曲时的内力——剪力和弯矩。但是,要解决梁的弯曲强度问题,只了解梁的内力是不够的,还必须研究梁的弯曲应力,应该知道梁在弯曲时,横截面上有什么应力,如何计算各点的应力。
在一般情况下,横截面上有两种内力——剪力和弯矩。由于剪力是横截面上切向内力系的合力,所以它必然与切应力有关;而弯矩是横截面上法向内力系的合力偶矩,所以它必然与正应力有关。由此可见,梁横截面上有剪力FQ时,就必然有切应力τ;有弯矩M时,就必然有正应力?。为了解决梁的强度问题,本章将分别研究正应力与切应力的计算。
7.2 弯曲正应力
7.2.1 纯弯曲梁的正应力
由前节知道,正应力只与横截面上的弯矩有关,而与剪力无关。因此,以横截面上只有弯矩,而无剪力作用的弯曲情况来讨论弯曲正应力问题。
在梁的各横截面上只有弯矩,而剪力为零的弯曲,称为纯弯曲。如果在梁的各横截面上,同时存在着剪力和弯矩两种内力,这种弯曲称为横力弯曲或剪切弯曲。例如在图7-1所示的简支梁中,BC段为纯弯曲,AB段和CD段为横力弯曲。
分析纯弯曲梁横截面上正应力的方法、步骤与分析圆轴扭转时横截面上切应力一样,需要综合考虑问题的变形方面、物理
方面和静力学方面。 图7-1
变形方面 为了研究与横截面上正应力相应的纵向线应变,首先观察梁在纯弯曲时的变形现象。为此,取一根具有纵向对称面的等直梁,例如图7-2(a)所示的矩形截
- 150 -
面梁,并在梁的侧面上画出垂直于轴线的横向线m-m、n-n和平行于轴线的纵向线d-d、b-b。然后在梁的两端加一对大小相等、方向相反的力偶Me,使梁产生纯弯曲。此时可以观察到如下的变形现象。
纵向线弯曲后变成了弧线a'a'、b'b', 靠顶面的aa线缩短了,靠底面的bb线伸长了。横向线m-m、n-n在梁变形后仍为直线,但相对转过了一定的角度,且仍与弯曲了的纵向线保持正交,如图7-2(b)所示。
梁内部的变形情况无法直接观察,但根据梁表面的变形现象对梁内部的变形进行如下假设:
(1) 平面假设 梁所有的横截面变形后仍为平面.且仍垂直于变形后的梁的轴线。 (2) 单向受力假设 认为梁由许许多多根纵向纤维组成,各纤维之间没有相互挤压,每根纤维均处于拉伸或压缩的单向受力状态。
根据平面假设,前面由实验观察到的变形现象已经可以推广到梁的内部。即梁在纯弯曲变形时,横截面保持平面并作相对转动,靠近上面部分的纵向纤维缩短,靠近下面部分的纵向纤维伸长。由于变形的连续性,中间必有一层纵向纤维既不伸长也不缩短,这层纤维称为中性层(图7-3)。中性层与横截面的交线称为中性轴。由于外力偶作用在梁的纵向对称面内因此梁的变形也应该对称于此平面,在横截面上就是对称于对称轴。所以中性轴必然垂直于对称轴,但具体在哪个位置上,目前还不能确定。
考察纯弯曲梁某一微段dx的变形(图7-4)。设弯曲变形以后,微段左右两横截面的相对转角为d?,则距中性层为y处的任一层纵向纤维bb变形后的弧长为
b'b'?(ρ?y)dθ
式中,ρ为中性层的曲率半径。该层纤维变形前的长度与中性层处纵向纤维OO长度相等,又因为变形前、后中性层内纤维OO的长度不变,故有
bb?OO?O'O'?ρdθ
由此得距中性层为y处的任一层纵向纤维的线应变
ε?b'b'?bb(ρ?y)dθ?ρdθy?? (a) bbρdθρ- 151 -
上式表明,线应变ε?随y按线性规律变化。
物理方面 根据单向受力假设,且材料在拉伸及压缩时的弹性模量E相等,则由虎
克定律,得
σ?Eε?Ey (b) ρ 式(b)表明,纯弯曲时的正应力按线性规律变化,横截面上中性轴处,y=0,因而?=0,中性轴两侧,一侧受拉应力,另一侧受压应力,与中性轴距离相等各点的正应力数值相等(图7-5)。
静力学方面 虽然已经求得了由式(b)表示的正应力分布规律,但因曲率半径?和中性轴的位置尚未确定,所以不能用式(b)计算正应力,还必须由静力学关系来解决。 在图7-5中,取中性轴为z轴,过z、y轴的交点并沿横截面外法线方向的轴为x轴,作用于微面积dA上的法向微内力为?dA。在整个横截面上,各微面积上的微内力构成一个空间平行力系。由静力学关系可知,应满足
?Fx?0,?My?0,
?Mz?0三个平衡方程。
由于所讨论的梁横截面上设有轴力,FN?0,故由
?Fx?0,得
FN?σdA?0 (c)
A?将式(b)代人式(c),得
?AσdA?EA?yEdA?ρρA?AydA?ESz?0 ρ式中,E/??恒不为零,故必有静矩Sz??ydA?0,由第5章知道,只有当z轴通过
- 152 -