内容发布更新时间 : 2024/11/8 2:58:52星期一 下面是文章的全部内容请认真阅读。
临界状态时:FS=FN?f = 3 \\* GB3 ③
联立 = 1 \\* GB3 ① = 2 \\* GB3 ② = 3 \\* GB3 ③式可得: P=100N ∴要刹住车不使重物落下则, P≥100N
5-17 解:梯子受力如图,设人重为Q=650N,杆长为l 由∑Fy=0 FNB-Q-P=0
∑MA=0 FNB?lcosα-FS lsinα-P?cosα?l/2=0 临界状态时: FS=FNB?fS
tg??Q?P/2联立上三式后可解得:
(Q?P)f?3.53S ∴ α=74°故梯子若保持平衡的条件为:α≥74°12′ 5-18解:滚子受力如图所示: ∑Fy=0 Psinα+FN-W=0 ∑MA=0 Mf-Pcosα?D/2=0 临界状态时:Mf=δ?FN 联立上三式得:P=57.8N 5-19 解:受力如图所示: ∑Fy=0 FN-P-Q=0 ∑MA=0 Mf-Q?r=0
′
12临界状态时:Mf=δ?FN
联立上三式解得:Q=Pδ/(r-δ) 5-20 解:支架受力如图所示: ∑Fy=0 P-FSA-FSB-G=0 = 1 \\* GB3 ① ∑Fx=0 FNA-FNB=0 = 2 \\* GB3 ②
∑MO=0 FSA?d/2+FNB?b-FSB?d/2-G?a=0 = 3 \\* GB3 ③ 临界状态时:FSA=FNA?f = 4 \\* GB3 ④ FSB=FNB?f = 5 \\* GB3 ⑤
将 = 4 \\* GB3 ④ = 5 \\* GB3 ⑤代入 = 1 \\* GB3 ① = 2 \\* GB3 ②后再代入 = 3 \\* GB3 ③可解得 P=3072.3N
5-21 解:∑Fx=0 -Gcosα-FS+FT=0 ∑Fy=0 FN-Gsinα=0 临界状态时:FS=FN?f
联立上三式解得:FT=G(sinα×0.3+cosα)=1037N 5-22解:套钩受力如图,全反力FRA,FRB与G汇交于点C 由几何关系得:b=(a+d/2)tgφm+(a-d/2)tgφm=2atgφm=2af 故为使套钩自锁应有:a≥b/2f=16.7cm